39 research outputs found

    APOE ε4 and exercise interact in a sex-specific manner to modulate dementia risk factors

    Get PDF
    Abstract Introduction: Apolipoprotein E (APOE) ε4 is the strongest genetic risk factor for Alzheimer\u27s disease and related dementias (ADRDs), affecting many different pathways that lead to cognitive decline. Exercise is one of the most widely proposed prevention and intervention strategies to mitigate risk and symptomology of ADRDs. Importantly, exercise and APOE ε4 affect similar processes in the body and brain. While both APOE ε4 and exercise have been studied extensively, their interactive effects are not well understood. Methods: To address this, male and female APOE ε3/ε3, APOE ε3/ε4, and APOE ε4/ε4 mice ran voluntarily from wean (1 month) to midlife (12 months). Longitudinal and cross-sectional phenotyping were performed on the periphery and the brain, assessing markers of risk for dementia such as weight, body composition, circulating cholesterol composition, murine daily activities, energy expenditure, and cortical and hippocampal transcriptional profiling. Results: Data revealed chronic running decreased age-dependent weight gain, lean and fat mass, and serum low-density lipoprotein concentration dependent on APOE genotype. Additionally, murine daily activities and energy expenditure were significantly influenced by an interaction between APOE genotype and running in both sexes. Transcriptional profiling of the cortex and hippocampus predicted that APOE genotype and running interact to affect numerous biological processes including vascular integrity, synaptic/neuronal health, cell motility, and mitochondrial metabolism, in a sex-specific manner. Discussion: These data in humanized mouse models provide compelling evidence that APOE genotype should be considered for population-based strategies that incorporate exercise to prevent ADRDs and other APOE-relevant diseases

    The APOEε3/ε4 Genotype Drives Distinct Gene Signatures in the Cortex of Young Mice

    Get PDF
    Introduction: Restrictions on existing APOE mouse models have impacted research toward understanding the strongest genetic risk factor contributing to Alzheimer\u27s disease (AD) and dementia, APOEε4 , by hindering observation of a key, common genotype in humans - APOEε3/ε4 . Human studies are typically underpowered to address APOEε4 allele risk as the APOEε4/ε4 genotype is rare, which leaves human and mouse research unsupported to evaluate the APOEε3/ε4 genotype on molecular and pathological risk for AD and dementia. Methods: As a part of MODEL-AD, we created and validated new versions of humanized APOEε3/ε3 and APOEε4/ε4 mouse strains that, due to unrestricted breeding, allow for the evaluation of the APOEε3/ε4 genotype. As biometric measures are often translatable between mouse and human, we profiled circulating lipid concentrations. We also performed transcriptional profiling of the cerebral cortex at 2 and 4 months (mos), comparing APOEε3/ε4 and APOEε4/ε4 to the reference APOEε3/ε3 using linear modeling and WGCNA. Further, APOE mice were exercised and compared to litter-matched sedentary controls, to evaluate the interaction between APOEε4 and exercise at a young age. Results: Expression of human APOE isoforms were confirmed in APOEε3/ε3, APOEε3/ε4 and APOEε4/ε4 mouse brains. At two mos, cholesterol composition was influenced by sex, but not APOE genotype. Results show that the APOEε3/ε4 and APOEε4/ε4 genotype exert differential effects on cortical gene expression. APOEε3/ε4 uniquely impacts \u27hormone regulation\u27 and \u27insulin signaling,\u27 terms absent in APOEε4/ε4 data. At four mos, cholesterol and triglyceride levels were affected by sex and activity, with only triglyceride levels influenced by APOE genotype. Linear modeling revealed APOEε3/ε4 , but not APOEε4/ε4 , affected \u27extracellular matrix\u27 and \u27blood coagulation\u27 related terms. We confirmed these results using WGCNA, indicating robust, yet subtle, transcriptional patterns. While there was little evidence of APOE genotype by exercise interaction on the cortical transcriptome at this young age, running was predicted to affect myelination and gliogenesis, independent of APOE genotype with few APOE genotype-specific affects identified. Discussion: APOEε4 allele dosage-specific effects were observed in circulating lipid levels and cortical transcriptional profiles. Future studies are needed to establish how these data may contribute to therapeutic development in APOEε3/ε4 and APOEε4/ε4 dementia patients

    Meox2 Haploinsufficiency Accelerates Axonal Degeneration in DBA/2J Glaucoma.

    Get PDF
    Purpose: Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods: Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results: URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions: Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    APOE ε4 and exercise interact in a sex‐specific manner to modulate dementia risk factors

    No full text
    Abstract Introduction Apolipoprotein E (APOE) ε4 is the strongest genetic risk factor for Alzheimer's disease and related dementias (ADRDs), affecting many different pathways that lead to cognitive decline. Exercise is one of the most widely proposed prevention and intervention strategies to mitigate risk and symptomology of ADRDs. Importantly, exercise and APOE ε4 affect similar processes in the body and brain. While both APOE ε4 and exercise have been studied extensively, their interactive effects are not well understood. Methods To address this, male and female APOE ε3/ε3, APOE ε3/ε4, and APOE ε4/ε4 mice ran voluntarily from wean (1 month) to midlife (12 months). Longitudinal and cross‐sectional phenotyping were performed on the periphery and the brain, assessing markers of risk for dementia such as weight, body composition, circulating cholesterol composition, murine daily activities, energy expenditure, and cortical and hippocampal transcriptional profiling. Results Data revealed chronic running decreased age‐dependent weight gain, lean and fat mass, and serum low‐density lipoprotein concentration dependent on APOE genotype. Additionally, murine daily activities and energy expenditure were significantly influenced by an interaction between APOE genotype and running in both sexes. Transcriptional profiling of the cortex and hippocampus predicted that APOE genotype and running interact to affect numerous biological processes including vascular integrity, synaptic/neuronal health, cell motility, and mitochondrial metabolism, in a sex‐specific manner. Discussion These data in humanized mouse models provide compelling evidence that APOE genotype should be considered for population‐based strategies that incorporate exercise to prevent ADRDs and other APOE‐relevant diseases

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy (vol 33, pg 110, 2019)

    No full text

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents
    corecore