6 research outputs found

    On the edge of a cloud

    No full text
    Cumulus clouds have since long been one of the greatest challenges in the atmospheric sciences. For a correct representation of clouds in weather and climate models, where they are the largest unknowns, a good understanding of interaction between cloud and environment is of prime importance. In this thesis, this problem is attacked with a combination of detailed numerical simulations and air-plane observations. While the traditional view states that air inside the cloud goes up, and all the air outside goes down in compensation, it is found here that on average, the air far away from the cloud hardly moves. Most of the compensating downward motion happens in the direct vicinity of the cloud, in a subsiding shell. This shell is shown to be due to cloudy air that evaporates, cools, and therefore sinks. Interaction between cloud and environment only happens through the buffer layer created by the shell. The shell is especially strong due to the horizontal mixing that is dominant in the cloud-environment interaction: processes that happen at the top of the cloud have little or no influence at lower levels. As a function of time, the cloud is not behaving like a continuous upward moving thermal, but consists of several bubble like pulses. Again, horizontal mixing is important in understanding the physics of these pulses.Applied Science

    A refined view of vertical mass transport by cumulus convection

    Get PDF
    The purpose of this letter is to show that the traditional view of transport by shallow cumulus clouds needs important refinement. On the basis of a straightforward geometrical analysis of Large Eddy Simulation results of shallow cumulus clouds, we conclude (1) that the upward mass transport by clouds is strongly dominated by regions close to the edge of clouds rather than by the core region of clouds and (2) that the downward mass transport is dominated by processes just outside the cloud. The latter finding contradicts the accepted view of a uniformly descending dry environment. We therefore advocate a refined view which distinguishes between the near-cloud environment and the distant environment. The near-cloud environment is characterized by coherent descending motions, whereas the distant environment is rather quiescent and plays no significant role in vertical transport.Multi-Scale PhysicsApplied Science

    Turbulent dispersion in cloud-topped boundary layers

    No full text
    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary layer (for reference), 2) a "smoke" cloud boundary layer in which the turbulence is driven by radiative cooling, 3) a stratocumulus topped boundary layer and 4) a shallow cumulus topped boundary layer. We show that the dispersion characteristics of the smoke cloud boundary layer as well as the stratocumulus situation can be well understood by borrowing concepts from previous studies of dispersion in the dry convective boundary layer. A general result is that the presence of clouds enhances mixing and dispersion – a notion that is not always reflected well in traditional parameterization models, in which clouds usually suppress dispersion by diminishing solar irradiance. The dispersion characteristics of a cumulus cloud layer turn out to be markedly different from the other three cases and the results can not be explained by only considering the well-known top-hat velocity distribution. To understand the surprising characteristics in the shallow cumulus layer, this case has been examined in more detail by 1) determining the velocity distribution conditioned on the distance to the nearest cloud and 2) accounting for the wavelike behaviour associated with the stratified dry environment.Infrastructures, Systems and ServicesTechnology, Policy and Managemen

    Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison

    Get PDF
    Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs) under well-mixed stratocumulus, cool SSTs under decoupled stratocumulus, and shallow cumulus clouds overlying warmer SSTs. The idealized climate change includes a uniform 2 K SST increase with corresponding moist-adiabatic warming aloft and subsidence changes, but no change in free-tropospheric relative humidity, surface wind speed, or CO2. For each case, realistic advective forcings and boundary conditions are generated for the control and perturbed states which each LES runs for 10 days into a quasi-steady state. For the control climate, the LESs correctly produce the expected cloud type at all three locations. With the perturbed forcings, all models simulate boundary-layer deepening due to reduced subsidence in the warmer climate, with less deepening at the warm-SST location due to regulation by precipitation. The models do not show a consistent response of liquid water path and albedo in the perturbed climate, though the majority predict cloud thickening (negative cloud feedback) at the cold-SST location and slight cloud thinning (positive cloud feedback) at the cool-SST and warm-SST locations. In perturbed climate simulations at the cold-SST location without the subsidence decrease, cloud albedo consistently decreases across the models. Thus, boundary-layer cloud feedback on climate change involves compensating thermodynamic and dynamic effects of warming and may interact with patterns of subsidence change.Geoscience & Remote SensingCivil Engineering and Geoscience

    Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications

    Get PDF
    The current version of the Dutch Atmospheric Large-Eddy Simulation (DALES) is presented. DALES is a large-eddy simulation code designed for studies of the physics of the atmospheric boundary layer, including convective and stable boundary layers as well as cloudy boundary layers. In addition, DALES can be used for studies of more specific cases, such as flow over sloping or heterogeneous terrain, and dispersion of inert and chemically active species. This paper contains an extensive description of the physical and numerical formulation of the code, and gives an overview of its applications and accomplishments in recent years.MSP/Multi-Scale PhysicsApplied Science

    CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models

    No full text
    CGILS—the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)—investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the “NESTS” negative cloud feedback and the “SCOPE” positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence—Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations.Geoscience & Remote SensingCivil Engineering and Geoscience
    corecore