1,144 research outputs found

    Levosimendan: current data, clinical use and future development.

    Get PDF
    Levosimendan is an inodilator indicated for the short-term treatment of acutely decompensated severe chronic heart failure, and in situations where conventional therapy is not considered adequate. The principal pharmacological effects of levosimendan are (a) increased cardiac contractility by calcium sensitisation of troponin C, (b) vasodilation, and (c) cardioprotection. These last two effects are related to the opening of sarcolemmal and mitochondrial potassium-ATP channels, respectively. Data from clinical trials indicate that levosimendan improves haemodynamics with no attendant significant increase in cardiac oxygen consumption and relieves symptoms of acute heart failure; these effects are not impaired or attenuated by the concomitant use of beta-blockers. Levosimendan also has favourable effects on neurohormone levels in heart failure patients. Levosimendan is generally well tolerated in acute heart failure patients: the most common adverse events encountered in this setting are hypotension, headache, atrial fibrillation, hypokalaemia and tachycardia. Levosimendan has also been studied in other therapeutic applications, particularly cardiac surgery - in which it has shown a range of beneficial haemodynamic and cardioprotective effects, and a favourable influence on clinical outcomes - and has been evaluated in repetitive dosing protocols in patients with advanced chronic heart failure. Levosimendan has shown preliminary positive effects in a range of conditions requiring inotropic support, including right ventricular failure, cardiogenic shock, septic shock, and Takotsubo cardiomyopathy

    The role of calpains in ventilator-induced diaphragm atrophy

    Get PDF
    Contains fulltext : 178017.pdf (publisher's version ) (Open Access)BACKGROUND: Controlled mechanical ventilation (CMV) is associated with diaphragm dysfunction. Dysfunction results from muscle atrophy and injury of diaphragm muscle fibers. Enhanced proteolysis and reduced protein synthesis play an important role in the development of atrophy. The current study is to evaluate the effects of the calpains inhibitor calpeptin on the development of diaphragm atrophy and activation of key enzymes of the ubiquitin-proteasome pathway in rats under CMV. METHODS: Three groups of rats were studied: control animals (CON, n = 8), rats subjected to 24 h of MV (CMV, n = 8), and rats subjected to 24 h of MV after administration of the calpain inhibitor calpeptin (CMVC, n = 8). The diaphragm was analyzed for calpain activity, myosin heavy chain (MHC) content, and cross-sectional area (CSA) of diaphragmatic muscle fibers as a marker for muscle atrophy. In addition, key enzymes of the ubiquitin-proteasome pathway (MAFbx and MuRF1) were also studied. RESULTS: CMV resulted in loss of both MHCfast and MHCslow. Furthermore, the CSA of diaphragmatic muscle fibers was significantly decreased after 24 h of CMV. However, calpain inhibitor calpeptin prevented loss of MHC and CSA after CMV. In addition, calpeptin prevented the increase in protein expression of calpain1 and calpain2 and reduced calpain activity as indicated by reduced generation of the calpain cleavage product alphaII-spectrin in the diaphragm. CMV-induced upregulation of both MAFbx and MuRF1 protein levels was attenuated by treatment with calpeptin. CONCLUSIONS: The calpain inhibitor calpeptin prevents MV-induced muscle atrophy. In addition, calpeptin attenuated the expression of key proteolytic enzymes known to be involved in ventilator-induced diaphragm atrophy, including MAFbx and MuRF1

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015
    corecore