46 research outputs found

    A method to obtain disinfected Globodera infective juveniles directly from cysts

    Get PDF
    Les systÚmes d'inoculation in vitro sont des outils performants et précis pour l'étude des interactions plantes-nématodes. L'obtention de juvéniles stériles est une étape cruciale pour la plupart de ces systÚmes. La majorité des protocoles publiés comprennent une désinfection des juvéniles, ce qui conduit à une mortalité élevée. Nous décrivons ici une nouvelle méthode pour désinfecter, rapidement, facilement, et à faible coût des nématodes du genre #Globodera$, en partant de kystes. La mortalité des juvéniles désinfectés est faible (entre 10 et 40% au maximum). Les juvéniles stérilisés infestent les racines de pomme de terre cultivées in vitro et s'y développent normalement. (Résumé d'auteur

    Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation

    Get PDF
    The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.info:eu-repo/semantics/publishedVersio

    Genetic diversity, sensitivity to phenylamide fungicides and aggressiveness of Phytophthora ramorum on Camellia, Rhododendron and Viburnum plants in Spain

    Full text link
    Phytophthora ramorum has been detected in official plant health surveys on Rhododendron, Viburnum and Camellia in ornamental nurseries in northern Spain since 2003. A collection of 94 isolates of P. ramorum was obtained from 2003 to 2008 from plants with symptoms at different geographical locations. Isolates were identified based on morphology and sequence of the rDNA ITS region. Mating type, genetic variation, sensitivity to phenylamide fungicides and aggressiveness of these isolates were determined. All isolates belonged to the A1 mating type, ruling out the possibility of genetic recombination. Seven microsatellite markers were used to study genetic diversity; three out of the seven microsatellite markers were polymorphic within the Spanish population of P. ramorum. This study confirms that all Spanish isolates of P. ramorum belonged to the EU1 lineage. Twelve intralineage genotypes were detected, five that are unique to Spain (EU1MG38, EU1MG41, EU1MG37, EU1MG39 and EU1MG40) and seven that are also present in at least one other European country (EU1MG1, EU1MG29, EU1MG22, EU1MG13, EU1MG2, EU1MG18 and EU1MG26). Genotypes EU1MG37, EU1MG39 and EU1MG40 were isolated from Rhododendron from one region; EU1MG38 and EU1MG41 were isolated from Camellia from two different regions. Isolates of genotype EU1MG38 were resistant to metalaxyl and mefenoxam. The level of genetic diversity within the Spanish population of P. ramorum is limited and indicates a relatively recent clonal expansion.The work of A. Vercauteren was supported in part by grant RT-05/04-PHYRAM1 of the Belgian Federal Public Service 'Health, Food Chain Safety and Environment'. This research was financially supported by the Project AGL2007-64690/AGR (Ministerio de Educacion y Ciencia, Spain).PĂ©rez Sierra, AM.; Álvarez, L.; Vercauteren, A.; Heungens, K.; Abad Campos, MP. (2011). Genetic diversity, sensitivity to phenylamide fungicides and aggressiveness of Phytophthora ramorum on Camellia, Rhododendron and Viburnum plants in Spain. Plant Pathology. 60(6):1069-1076. https://doi.org/10.1111/j.1365-3059.2011.02485.xS10691076606Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. doi:10.1111/j.1365-3059.2008.01886.xCooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genetics and Biology, 30(1), 17-32. doi:10.1006/fgbi.2000.1202Fichtner, E. J., Lynch, S. C., & Rizzo, D. M. (2007). Detection, Distribution, Sporulation, and Survival of Phytophthora ramorum in a California Redwood-Tanoak Forest Soil. Phytopathology, 97(10), 1366-1375. doi:10.1094/phyto-97-10-1366Garbelotto M Ivors K Huberli D Bonants PM Wagner A 2006 Potential for sexual reproduction of Phytophthora ramorum in Washington State nurseries 129 30Goss, E. M., Larsen, M., Chastagner, G. A., Givens, D. R., & GrĂŒnwald, N. J. (2009). Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries. PLoS Pathogens, 5(9), e1000583. doi:10.1371/journal.ppat.1000583GrĂŒnwald, N. J., & Flier, W. G. (2005). The Biology ofPhytophthora infestansat Its Center of Origin. Annual Review of Phytopathology, 43(1), 171-190. doi:10.1146/annurev.phyto.43.040204.135906GrĂŒnwald, N. J., Sturbaum, A. K., Montes, G. R., Serrano, E. G., Lozoya-Saldaña, H., & Fry, W. E. (2006). Selection for Fungicide Resistance Within a Growing Season in Field Populations ofPhytophthora infestansat the Center of Origin. Phytopathology, 96(12), 1397-1403. doi:10.1094/phyto-96-1397GrĂŒnwald, N. J., Goss, E. M., Ivors, K., Garbelotto, M., Martin, F. N., Prospero, S., 
 Widmer, T. L. (2009). Standardizing the Nomenclature for Clonal Lineages of the Sudden Oak Death Pathogen,Phytophthora ramorum. Phytopathology, 99(7), 792-795. doi:10.1094/phyto-99-7-0792Hansen, E. M., Reeser, P. W., Sutton, W., Winton, L. M., & Osterbauer, N. (2003). First Report of A1 Mating Type of Phytophthora ramorum in North America. Plant Disease, 87(10), 1267-1267. doi:10.1094/pdis.2003.87.10.1267aIvors, K. L., Hayden, K. J., Bonants, P. J. M., Rizzo, D. M., & Garbelotto, M. (2004). AFLP and phylogenetic analyses of North American and European populations of Phytophthora ramorum. Mycological Research, 108(4), 378-392. doi:10.1017/s0953756204009827IVORS, K., GARBELOTTO, M., VRIES, I. D. E., RUYTER-SPIRA, C., HEKKERT, B. T., ROSENZWEIG, N., & BONANTS, P. (2006). Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology, 15(6), 1493-1505. doi:10.1111/j.1365-294x.2006.02864.xJeffers, S. N. (1986). Comparison of Two Media Selective forPhytophthoraandPythiumSpecies. Plant Disease, 70(11), 1038. doi:10.1094/pd-70-1038Kroon, L. P. N. M., Verstappen, E. C. P., Kox, L. F. F., Flier, W. G., & Bonants, P. J. M. (2004). A Rapid Diagnostic Test to Distinguish Between American and European Populations of Phytophthora ramorum. Phytopathology, 94(6), 613-620. doi:10.1094/phyto.2004.94.6.613Martin, F. N. (2008). Mitochondrial haplotype determination in the oomycete plant pathogen Phytophthora ramorum. Current Genetics, 54(1), 23-34. doi:10.1007/s00294-008-0196-8MASCHERETTI, S., CROUCHER, P. J. P., KOZANITAS, M., BAKER, L., & GARBELOTTO, M. (2009). Genetic epidemiology of the Sudden Oak Death pathogenPhytophthora ramorumin California. Molecular Ecology, 18(22), 4577-4590. doi:10.1111/j.1365-294x.2009.04379.xMeentemeyer, R., Rizzo, D., Mark, W., & Lotz, E. (2004). Mapping the risk of establishment and spread of sudden oak death in California. Forest Ecology and Management, 200(1-3), 195-214. doi:10.1016/j.foreco.2004.06.021Moralejo, E., & Werres, S. (2002). First Report of Phytophthora ramorum on Rhododendron sp. in Spain. Plant Disease, 86(9), 1052-1052. doi:10.1094/pdis.2002.86.9.1052aMoralejo, E., PĂ©rez-Sierra, A. M., Álvarez, L. A., Belbahri, L., Lefort, F., & Descals, E. (2009). Multiple alienPhytophthorataxa discovered on diseased ornamental plants in Spain. Plant Pathology, 58(1), 100-110. doi:10.1111/j.1365-3059.2008.01930.xParra, G., & Ristaino, J. B. (2001). Resistance to Mefenoxam and Metalaxyl Among Field Isolates of Phytophthora capsici Causing Phytophthora Blight of Bell Pepper. Plant Disease, 85(10), 1069-1075. doi:10.1094/pdis.2001.85.10.1069Varela, C. P., VĂĄzquez, J. P. M., & Casal, O. A. (2003). First Report of Phytophthora ramorum on Camellia japonica in Spain. Plant Disease, 87(11), 1396-1396. doi:10.1094/pdis.2003.87.11.1396aPROSPERO, S., BLACK, J. A., & WINTON, L. M. (2004). Isolation and characterization of microsatellite markers in Phytophthora ramorum, the causal agent of sudden oak death. Molecular Ecology Notes, 4(4), 672-674. doi:10.1111/j.1471-8286.2004.00778.xPROSPERO, S., HANSEN, E. M., GRÜNWALD, N. J., & WINTON, L. M. (2007). Population dynamics of the sudden oak death pathogen Phytophthora ramorum in Oregon from 2001 to 2004. Molecular Ecology, 16(14), 2958-2973. doi:10.1111/j.1365-294x.2007.03343.xProspero, S., GrĂŒnwald, N. J., Winton, L. M., & Hansen, E. M. (2009). Migration Patterns of the Emerging Plant PathogenPhytophthora ramorumon the West Coast of the United States of America. Phytopathology, 99(6), 739-749. doi:10.1094/phyto-99-6-0739Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the Cause of Extensive Mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86(3), 205-214. doi:10.1094/pdis.2002.86.3.205Taylor, R. J., Salas, B., Secor, G. A., Rivera, V., & Gudmestad, N. C. (2002). Sensitivity of North American Isolates of Phytophthora erythroseptica and Pythium ultimum to Mefenoxam (Metalaxyl). Plant Disease, 86(7), 797-802. doi:10.1094/pdis.2002.86.7.797VERCAUTEREN, A., DE DOBBELAERE, I., GRÜNWALD, N. J., BONANTS, P., VAN BOCKSTAELE, E., MAES, M., & HEUNGENS, K. (2010). Clonal expansion of the BelgianPhytophthora ramorumpopulations based on new microsatellite markers. Molecular Ecology, 19(1), 92-107. doi:10.1111/j.1365-294x.2009.04443.xVercauteren, A., De Dobbelaere, I., Van Bockstaele, E., Maes, M., & Heungens, K. (2010). Genotypic and phenotypic characterization of the European A2 isolates of Phytophthora ramorum. European Journal of Plant Pathology, 129(4), 621-635. doi:10.1007/s10658-010-9727-5Werres, S., & De Merlier, D. (2003). First Detection of Phytophthora ramorum Mating Type A2 in Europe. Plant Disease, 87(10), 1266-1266. doi:10.1094/pdis.2003.87.10.1266cWerres, S., & Kaminski, K. (2005). Characterisation of European and North American Phytophthora ramorum isolates due to their morphology and mating behaviour in vitro with heterothallic Phytophthora species. Mycological Research, 109(8), 860-871. doi:10.1017/s0953756205003369Werres, S., Marwitz, R., Man In’t veld, W. A., De Cock, A. W. A. M., Bonants, P. J. M., De Weerdt, M., 
 Baayen, R. P. (2001). Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycological Research, 105(10), 1155-1165. doi:10.1016/s0953-7562(08)61986-3White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS. PCR Protocols, 315-322. doi:10.1016/b978-0-12-372180-8.50042-

    Effect of host factors on the susceptibility of Rhododendron to Phytophthora ramorum

    No full text
    Phytophthora ramorum causes sudden oak death ( SOD) in western coastal forests of the USA. In Europe, the pathogen is mainly present in the nursery industry, particularly on Rhododendron. Because of the primary role of Rhododendron as a host and potentially as a vector, the effect of Rhododendron host factors on P. ramorum susceptibility and sporulation was investigated. Inoculation methods using either wounded or non-wounded detached leaves were applied to 59 Rhododendron cultivars and 22 botanical species, replicated in three separate years. All Rhododendron species and cultivars were susceptible when using wounded leaves, but not when using non-wounded leaves, suggesting a resistance mechanism operating at the level of leaf penetration. Using a regression tree analysis, the cultivars and species were split into four susceptibility classes. Young leaves were more susceptible than mature leaves when wounded, but less susceptible when non-wounded. This effect was not correlated with leaf hydrophobicity or the number of leaf hairs. The presence or the type of rootstock did not affect the cultivar susceptibility level. Sporangia and chlamydospore production in the leaf lesions varied widely among Rhododendron cultivars and was not correlated with the susceptibility level. The susceptibility to P. ramorum correlated well with the susceptibility to P. citricola and P. hedraiandra x cactorum, suggesting that the resistance mechanisms against these species are non-specific. Susceptibility to P. kernoviae was low for most cultivars. These findings have implications for detection, spread and disease control, and are therefore important in pest risk assessment
    corecore