17 research outputs found

    Specific Induction of Double Negative B Cells During Protective and Pathogenic Immune Responses

    Get PDF
    Double negative (DN) (CD19(+)CD20(low)CD27(-)IgD(-)) B cells are expanded in patients with autoimmune and infectious diseases;however their role in the humoral immune response remains unclear. Using systematic flow cytometric analyses of peripheral blood B cell subsets, we observed an inflated DN B cell population in patients with variety of active inflammatory conditions: myasthenia gravis, Guillain-Barre syndrome, neuromyelitis optica spectrum disorder, meningitis/encephalitis, and rheumatic disorders. Furthermore, we were able to induce DN B cells in healthy subjects following vaccination against influenza and tick borne encephalitis virus. Transcriptome analysis revealed a gene expression profile in DN B cells that clustered with naive B cells, memory B cells, and plasmablasts. Immunoglobulin VH transcriptome sequencing and analysis of recombinant antibodies revealed clonal expansion of DN B cells that were targeted against the vaccine antigen. Our study suggests that DN B cells are expanded in multiple inflammatory neurologic diseases and represent an inducible B cell population that responds to antigenic stimulation, possibly through an extra-follicular maturation pathway

    Approaching the socialist factory and its workforce: considerations from fieldwork in (former) Yugoslavia

    Get PDF
    The socialist factory, as the ‘incubator’ of the new socialist (wo)man, is a productive entry point for the study of socialist modernization and its contradictions. By outlining some theoretical and methodological insights gathered through field-research in factories in former Yugoslavia, we seek to connect the state of labour history in the Balkans to recent breakthroughs made by labour historians of other socialist countries. The first part of this article sketches some of the specificities of the Yugoslav self-managed factory and its heterogeneous workforce. It presents the ambiguous relationship between workers and the factory and demonstrates the variety of life trajectories for workers in Yugoslav state-socialism (from model communists to alienated workers). The second part engages with the available sources for conducting research inside and outside the factory advocating an approach which combines factory and local archives, print media and oral history

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample

    Central European Woolly Mammoth population dynamics: Insights from Late Pleistocene Mitochondrial Genomes

    No full text
    Abstract The population dynamics of the Pleistocene woolly mammoth (Mammuthus primigenius) has been the subject of intensive palaeogenetic research. Although a large number of mitochondrial genomes across Eurasia have been reconstructed, the available data remains geographically sparse and mostly focused on eastern Eurasia. Thus, population dynamics in other regions have not been extensively investigated. Here, we use a multi-method approach utilising proteomic, stable isotope and genetic techniques to identify and generate twenty woolly mammoth mitochondrial genomes, and associated dietary stable isotopic data, from highly fragmentary Late Pleistocene material from central Europe. We begin to address region-specific questions regarding central European woolly mammoth populations, highlighting parallels with a previous replacement event in eastern Eurasia ten thousand years earlier. A high number of shared derived mutations between woolly mammoth mitochondrial clades are identified, questioning previous phylogenetic analysis and thus emphasizing the need for nuclear DNA studies to explicate the increasingly complex genetic history of the woolly mammoth

    Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors

    No full text
    Bone marrow is a major homing site for circulating epithelial tumor cells. The present study was aimed to assess the proliferative capacity of occult metastatic cells in bone marrow of patients with operable solid tumors especially with regard to their clinical outcome. We obtained bone marrow aspirates from 153 patients with carcinomas of the prostate (n = 46), breast (n = 45), colon (n = 33), and kidney (n = 29). Most of the patients (87%) had primary disease with no clinical signs of overt metastases [tumor-node-metastasis (TNM)-stage UICC (Union Internationale Contre le Cancer) I-III]. After bone marrow was cultured for 21–102 days under special cell culture conditions, viable epithelial cells were detected by cytokeratin staining in 124 patients (81%). The cultured epithelial cells harbored Ki-ras2 mutations and numerical chromosomal aberrations. The highest median number of expanded tumor cells was observed in prostate cancer (2,619 per flask). There was a significant positive correlation between the number of expanded tumor cells and the UICC-stage of the patients (P = 0.03) or the presence of overt metastases (P = 0.04). Moreover, a strong expansion of tumor cells was correlated to an increased rate of cancer-related deaths (P = 0.007) and a reduced survival of the patients (P = 0.006). In conclusion, the majority of cancer patients have viable tumor cells in their bone marrow at primary tumor diagnosis, and the proliferative potential of these cells determines the clinical outcome

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample
    corecore