494 research outputs found

    Using MODIS derived <i>f</i>PAR with ground based flux tower measurements to derive the light use efficiency for two Canadian peatlands

    Get PDF
    International audienceWe used satellite remote sensing data; fraction of photosynthetically active radiation absorbed by vegetation (fPAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with tower eddy covariance and meteorological measurements to characterise the light use efficiency parameter (?) variability and the maximum ? (?max) for two contrasting Canadian peatlands. Eight-day MODIS fPAR data were acquired for the Mer Bleue (2000 to 2003) and Western Peatland (2004). Flux tower eddy covariance and meteorological measurements were integrated to the same eight-day time stamps as the MODIS fPAR data. A light use efficiency model: GPP=? * APAR (where GPP is Gross Primary Productivity and APAR is absorbed photosynthetically active radiation) was used to calculated ?. The ?max value for each year (2000 to 2003) at the Mer Bleue bog ranged from 0.58 g C MJ?1 to 0.78 g C MJ?1 and was 0.91 g C MJ?1 in 2004, for the Western Peatland. The average growing season ? for the Mer Bleue bog for the four year period was 0.35 g C MJ?1 and for the Western Peatland in 2004 was 0.57 g C MJ?1. The average snow free period ? for the Mer Bleue bog over the four year period was 0.27 g C MJ?1 and for the Western Peatland in 2004 was 0.39 g C MJ?1. Using the light use efficiency method we calculated the ?max and the annual variability in ? for two Canadian peatlands. We determined that temperature was a growth-limiting factor at both sites Vapour Pressure Deficit (VPD) however was not. MODIS fPAR is a useful tool for the characterization of ? at flux tower sites

    Effects of finite curvature on soliton dynamics in a chain of nonlinear oscillators

    Full text link
    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a number of qualitative effects. In particular, the energy of nonlinear localized excitations centered on the bending decreases when curvature increases, i.e. bending manifests itself as a trap for excitations. Moreover, the potential of this trap is double-well, thus leading to a symmetry breaking phenomenon: a symmetric stationary state may become unstable and transform into an energetically favorable asymmetric stationary state. The essentials of symmetry breaking are examined analytically for a simplified model. We also demonstrate a threshold character of the scattering process, i.e. transmission, trapping, or reflection of the moving nonlinear excitation passing through the bending.Comment: 13 pages (LaTeX) with 10 figures (EPS

    Electrophysiological activation by masked primes: Independence of prime-related and target-related activities

    Get PDF
    Visual stimuli that are made invisible by metacontrast masking (primes) have a marked influence on behavioral and psychophysiological measures such as reaction time (RT) and the lateralized readiness potential (LRP). 4 experiments are reported that shed light on the effects that masked primes have on the LRP. Participants had a go-nogo task in which the prime was associated with 1 of 2 responses even if the target required participants to refrain from responding. To analyze the electrophysiological responses, we computed the LRP and applied an averaging method separating the activation due to the prime and the target. The results demonstrated that (a) masked primes activate responses even in a nogo situation, (b) this prime-related activation is independent of masking, (c) and is also independent of whether prime and target require the same responses (congruent condition) or different responses (incongruent condition)

    Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS

    Get PDF
    A method has been developed for the direct and simultaneous multielement determination of Cu, Zn, Sn, and Pb in soil and sediment samples using femtosecond laser ablation inductively coupled plasma mass spectrometry (fs-LA-ICPMS) in combination with isotope dilution mass spectrometry (IDMS). The in-cell isotope dilution fs-LA-ICPMS method proposed in this work was based on the quasi-simultaneous ablation of the natural abundance sample and the isotopically enriched solid spike, which was performed using a high repetition rate laser and a fast scanning beam device in a combined manner. Both the sample preparation procedure and the total analysis time have been drastically reduced, in comparison with previous approaches, since a unique multielement isotopically enriched solid spike was employed to analyze different powdered samples. Numerous experimental parameters were carefully selected (e.g., carrier gas flow rate, inlet diameter of the ablation cell, sample translation speed, scanner speed, etc.) in order to ensure the complete mixing between the sample and the solid spike aerosols. The proposed in-cell fs-LA-ICP-IDMS method was tested for the analysis of two soil (CRM 142R, GBW-07405) and two sediment (PACS-2, IAEA-405) reference materials, and the analysis of Cu, Zn, Sn, and Pb yielded good agreement of usually not more than 10% deviation from the certified values and precisions of less than 15% relative standard deviation. Furthermore, the concentrations were in agreement not only with the certified values but also with those obtained by ICP-IDMS after the microwave-assisted digestion of the solid samples, demonstrating therefore that in-cell fs-LA-ICP-IDMS opens the possibility for accurate and precise determinations of trace elements in powdered samples reducing the total sample preparation time to less than 5 min. Additionally, scanning electron microscope measurements showed that the aerosol generated by in-cell fs-LA-ICP-IDMS predominantly consisted of linear agglomerates of small particles (in the order of few tens of nanometers) and a few large spherical particles with diameters below 225 nm

    Thaliporphine Preserves Cardiac Function of Endotoxemic Rabbits by Both Directly and Indirectly Attenuating NFκB Signaling Pathway

    Get PDF
    Cardiac depression in sepsis is associated with the increased morbidity and mortality. Although myofilaments damage, autonomic dysfunction, and apoptosis play roles in sepsis-induced myocardial dysfunction, the underlying mechanism is not clear. All of these possible factors are related to NFκB signaling, which plays the main role in sepsis signaling. Thaliporphine was determined to possess anti-inflammatory and cardioprotective activity by suppressing NFκB signaling in rodents. The purpose of this study is to further prove this protective effect in larger septic animals, and try to find the underlying mechanisms. The systolic and diastolic functions were evaluated in vivo by pressure-volume analysis at different preloads. Both preload-dependent and -independent hemodynamic parameters were performed. Inflammatory factors of whole blood and serum samples were analyzed. Several sepsis-related signaling pathways were also determined at protein level. Changes detected by conductance catheter showed Thaliporphine could recover impaired left ventricular systolic function after 4 hours LPS injection. It could also reverse the LPS induced steeper EDPVR and gentler ESPVR, thus improve Ees, Ea, and PRSW. Thaliporphine may exert this protective effect by decreasing TNFα and caspase3 dependent cell apoptosis, which was consistent with the decreased serum cTnI and LDH concentration. Thaliporphine could protect sepsis-associated myocardial dysfunction in both preload-dependent and -independent ways. It may exert these protective effects by both increase of “good”-PI3K/Akt/mTOR and decrease of “bad”-p38/NFκB pathways, which followed by diminishing TNFα and caspase3 dependent cell apoptosis

    Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis

    Get PDF
    Background: Interactions between mononuclear cells and activated pancreatic myofibroblasts (pancreatic stellate cells; PSC) may contribute to inflammation and fibrosis in chronic pancreatitis (CP). Methods: Markers of fibrosis and inflammation were concomitantly analysed by immunohistochemistry in chronic pancreatitis tissues. In vitro, PSC were stimulated with TNFalpha and LPS. Primary human blood mononuclear cells (PBMC) and PSC were cocultured, followed by analysis of cytokines and extracellular matrix (ECM) proteins. PBMC were derived from healthy donors and CP and septic shock patients. Results: In areas of mononuclear cell infiltration in chronic pancreatitis tissues, there was decreased immunoreactivity for collagen1 and fibronectin, in contrast to areas with sparse mononuclear cells, although PSC were detectable in both areas. LPS and TNFalpha induced collagen1 and fibronectin levels as well as the matrix degradation enzyme MMP-1. Coculture experiments with PSC and PBMC revealed increased fibronectin secretion induced by PBMC. In addition, donor and CP PBMC significantly induced an increase in IL-6, MCP-1 and TGFbeta levels under coculture conditions. Determination of the source of cytokines and ECM proteins by mRNA expression analysis confirmed PSC as major contributors of ECM production. The increase in cytokine expression was PBMC- and also PSC-derived. Conclusion: Mononuclear cells modulate the activity of pancreatic stellate cells, which may in turn promote fibrosis and inflammation

    Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO<sub>2 </sub>for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.</p> <p>Results</p> <p>The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d<sup>-1 </sup>for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO<sub>2 </sub>mol H<sub>2</sub>O<sup>-1 </sup>and the light use efficiency (LUE) was 0.95 mmol CO<sub>2 </sub>mol PPFD<sup>-1</sup>. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d<sup>-1 </sup>for the 8 day period. The WUE was lower, 0.97 mmol CO<sub>2 </sub>mol H<sub>2</sub>O<sup>-1 </sup>and the LUE was higher, 7.2 <it>μ</it>mol CO<sub>2 </sub>mmol PPFD<sup>-1 </sup>during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 <it>μ</it>mol m<sup>-2</sup>s<sup>-1 </sup>and then levels off.</p> <p>Conclusion</p> <p>Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.</p

    A survey of the ATP-binding cassette (ABC) gene superfamily in the salmon louse (Lepeophtheirus salmonis)

    Get PDF
    Salmon lice,Lepeophtheirus salmonis(Kr&oslash;yer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon,Salmo salarLinnaeus, 1758. The control ofL.salmonisat fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which inL.salmonisis documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters inL.salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes inL.salmonisfor which, ABC superfamily members were identified through homology searching of theL.salmonisgenome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters,i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family ofL.salmonispossesses fewer members than recorded for other arthropods. The present survey of theL.salmonisABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance

    Sulfur-Directed Olefin Oxidations: Observation of Divergent Reaction Mechanisms in the Palladium-Mediated Acetoxylation of Unsaturated Thioacetals

    Get PDF
    The Pd-mediated oxidation of unsaturated thioacetals gives either allyl or vinyl esters, depending on the substrate structure. We report the characterization of a range of sulfur-stabilized palladium intermediates via a combined computational and experimental NMR approach, demonstrating that the oxidation proceeds via two divergent reaction mechanisms. We were also able to synthesize an unusual sigma-bound Pd complex, via acetoxypalladation of an unsaturated dithiane, which was characterized by X-ray crystallography
    corecore