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Abstract. We used satellite remote sensing data; fraction
of photosynthetically active radiation absorbed by vegetation
(f PAR) from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) in combination with tower eddy covari-
ance and meteorological measurements to characterise the
Light Use Efficiency parameter (ε) variability and the maxi-
mumε (εmax) for two contrasting Canadian peatlands. Eight-
day MODIS f PAR data were acquired for the Mer Bleue
(2000 to 2003) and Western Peatland (2004). Flux tower
eddy covariance and meteorological measurements were in-
tegrated to the same eight-day time stamps as the MODIS
f PAR data. A light use efficiency model: GPP =ε×APAR
(where GPP is Gross Primary Productivity and APAR is ab-
sorbed photosynthetically active radiation) was used to cal-
culateε. Theεmax value for each year (2000 to 2003) at the
Mer Bleue bog ranged from 0.58 g C MJ−1 to 0.78 g C MJ−1

and was 0.91 g C MJ−1 in 2004, for the Western Peatland.
The average growing seasonε for the Mer Bleue bog for
the four year period was 0.35 g C MJ−1 and for the West-
ern Peatland in 2004 was 0.57 g C MJ−1. The average snow
free period for the Mer Bleue bog over the four years was
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0.27 g C MJ−1 and for the Western Peatland in 2004 was
0.39 g C MJ−1. Using the light use efficiency method we
calculated theεmax and the annual variability inε for two
Canadian peatlands. We determined that temperature was a
growth-limiting factor at both sites Vapour Pressure Deficit
(VPD) however was not. MODISf PAR is a useful tool for
the characterization ofε at flux tower sites.

1 Introduction

Northern peatlands contain approximately one third of global
soil carbon (Gorham, 1991). They have been accumulating
carbon for the last 6000 to 10000 years of the Holocene (Vitt
et al., 2000; Gorham et al., 2003). Few multi-year flux mea-
surement programs have been conducted on peatland ecosys-
tems (e.g. Lafleur et al., 2001; Arneth et al., 2002; Aurela et
al., 2002; Lafleur et al., 2003), but available data suggest
that carbon accumulation continues to occur. Peatlands ac-
cumulate carbon because net primary productivity (NPP), on
average, exceeds decomposition. NPP in peatlands is not par-
ticularly large, but decomposition rates are low because the
high water content reduces oxygen diffusion into litter and
surface horizons and the litter of the plant types that grow on

Published by Copernicus Publications on behalf of the European Geosciences Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26107958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/


226 J. Connolly et al.: Peatland light use efficiency derived from MODISf PAR and flux

many peatlands, particularly bogs, is not readily decomposed
(Malmer and Walĺen, 2004).

Climate simulations have indicated that higher latitudes
will probably experience warming and changes in avail-
able moisture (precipitation-evapotranspiration) (Albritton
and Meira Filho, 2001). This has raised concern over
whether the environmental conditions conducive to peat-
land carbon accumulation will be sustained in the future
(e.g. Moore et al., 1998). Many of these peatland types are
located in remote areas of the boreal and subarctic climatic
zones therefore tools that utilise remotely sensed data to infer
changes in ecosystem productivity and net carbon exchange
would be very useful. Remote sensing can be used to es-
timate NPP over large areas (Running et al., 1999; Ahl et
al., 2004). While there has been considerable effort to de-
velop these types of tools for forested and cropland ecosys-
tems (e.g. Potter et al., 1993, Turner et al., 2002, 2003; Ahl
et al., 2004) peatlands have received little attention.

Monteith (1972) first proposed an approach to relate
f PAR to biomass production that became known as the light
use efficiency (LUE) model (Hunt, 1994; Gower et al., 1999;
Brogaard et al., 2005). The LUE model of gross primary
production (GPP in g C m−2 d−1) is generally given as:

GPP= ε × APAR (1)

whereε is the light use efficiency parameter (g C MJ−1) and
APAR is MJ m−2 d−1. APAR is generally given as:

APAR =↓ PAR× fPAR (2)

where↓PAR is incident photosynthetically active radiation
andf PAR is a fraction of photosynthetically active radiation
that is absorbed.

f PAR is a key biological property that is important for es-
timating canopy photosynthesis (Goetz et al., 1999; Seaquist
et al., 2003) because it characterizes vegetation canopy func-
tion and energy absorption capacity (Myneni et al., 2002,
2003; Wang et al., 2001). It is a measure of the proportion
of available radiation in the photosynthetically active wave-
lengths (0.4 to 0.7µm) that a canopy absorbs (Savtchenko et
al., 2003; Myneni et al., 2003; Fensholt et al., 2004).f PAR
is also the radiometric equivalent of leaf area index (Running
et al., 2000).

Early studies assumed that LUE orε was constant. Mon-
teith’s (1972) original theory was designed for well-watered
crops only during the growing season (Heinsch et al., 2003).
The LUE is based on the positive linear relationship be-
tween NPP and absorbed photosynthetically active radiation
(APAR). It is used to translate remotely sensed estimates of
light absorption into GPP or NPP (Ruimy et al., 1994; Lobell
et al., 2002). Howeverε has been shown to vary spatially
between biomes, ecosystems, and plant species, and tempo-
rally over the growing season even within spatially homo-
geneous vegetation canopies (Ruimy et al., 1994; Turner et

al., 2002; Brogaard et al., 2005). Photosynthesis and respira-
tion are strongly sensitive to environmental controls such as
VPD and air temperatures (Fan et al., 1995; Kimball et al.,
2000). Heinsch et al. (2003), extrapolated the LUE theory
to perennial plants living throughout the year and thus were
subject to stresses such as temperature and VPD. Low tem-
peratures affect plants abilities to photosynthesize and a high
VPD has been shown to inhibit photosynthesis by causing
stomata closure (Heinsch et al., 2003). Nutrient conditions
can also affect photosynthesis. Ombrotrophic peatlands ex-
perience poor nutrient condition however, the vegetation that
grows in peatlands is adapted to these poor nutrient condi-
tions and therefore the nutrient effect should be manifested
through reflectance. Estimates of GPP from LUE models
may be improved if vegetation association or ecosystem level
specific parameter values are used (Goetz and Prince, 1999;
Ahl et al., 2004; Coursolle et al., 2006). Several authors have
suggested that more work is needed to characterise the spatial
and temporal variability inε (Ruimy et al., 1994; Goetz and
Prince, 1998; Gower et al., 1999). This study uses the light
use efficiency model approach to estimate a value forε that
has been attenuated by the sub-optimal environmental condi-
tions of temperature and vapour pressure deficit. Therefore
the objectives of this work were a) to examine howε varied
throughout the growing season and b) to derive a maximum
annual estimatedε (εmax) for two contrasting Canadian peat-
lands using MODIS derivedf PAR.

2 Methods

2.1 Peatland study sites

Two Fluxnet Canada Research Network sites were used in
this study, the Eastern (Mer Bleue bog) and Western Peatland
sites, both equipped with eddy covariance flux measurement
towers. The Mer Bleue bog is located in the Ottawa valley-
St. Lawrence Lowland, Ontario (45◦24′ N latitude, 75◦30′ W
longitude) (Lafleur et al., 2001). The elevation of the bog
is 70 m (Smith and Lafleur, 2003). It is a raised, low-shrub,
ombrotrophic bog of 2800 ha (Moore et al., 2002; Bubier et
al., 2003). Peat depths range from 5 to 6 m near the tower site
to ∼2 m at the edges of the bog (Bubier et al., 2003; Lafleur
et al., 2003). This bog is representative of raised shrub bogs
of the boreal region (Lafleur et al., 2001). The climate of the
region is cool continental, with a mean annual temperature
of 5.8◦C and an annual precipitation of 910 mm (Lafleur et
al., 2003). The coldest month is January (−10.8◦C) and the
warmest July (20.8◦C). Over three quarters of the annual pre-
cipitation falls as rain and the average growing season (May
to September) precipitation is 410 mm (Lafleur et al., 2003).
The plant communities on the bog are dominated by erica-
ceous shrubs andSphagnummosses with secondary commu-
nities consisting of deciduous shrubs, sedges and trees (Bu-
bier et al., 2003). The water table during the growing season
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over the five years was between 20 and 73 cm below the sur-
face at the Mer Bleue.

The Western Peatland site is located in the La Biche River
area in Alberta (54◦57’N latitude, 112◦28′ W longitude). The
site is a moderately rich treed fen (Syed et al., 2006). The cli-
mate of the region is continental, with a mean annual temper-
ature of 2.1◦C and the annual precipitation is 504 mm (Syed
et al., 2006). The coldest month is January (−15◦C) and the
warmest is July (∼16◦C). The vegetation of the study site
was dominated by stunted trees ofPicea marianaandLarix
laricina, with high abundance of a shrub,Betula pumila, and
a wide range of moss species (Syed et al., 2006).

2.2 In situ measurements

The eddy covariance towers collect data that permit daily
records of net ecosystem exchange (NEE), ecosystem res-
piration (ER) and↓PAR to be made (Lafleur at al., 2001;
Moore et al., 2002, Lafleur et al., 2003 and Syed et al.,
2006). Measurements began at Mer Bleue in 1998 and in
2003 at the Western Peatland (Lafleur et al., 2003; Syed et
al., 2006).↓PAR was measured at both sites using quantum
sensors (Lafleur et al., 2001; Lafleur et al., 2003; Syed et al.,
2006). NEE and ER were measured at the Mer Bleue bog
with a closed-path infrared gas analyzer (initially a LI6262
but upgraded in 2002 to a LI7000, LI-COR, Lincoln, NB,
USA) (Lafleur et al., 2001, 2003) and at the Western Peat-
land with a fast response closed-path infra-red gas analyzer
(LI7000, LI-COR, Lincoln, NB, USA) (Syed et al., 2006).
Night time NEE is taken to be a direct measurement of ER
(Lafleur et al., 2003), and extrapolated to daytime conditions
using ER vs. temperature functions. At both sites, several
environmental measurements were also made in support of
the flux tower data including: air temperature, relative hu-
midity, wind speed, soil temperature and depth to water ta-
ble from the peat surface. Measurements of precipitation,
snow depth and atmospheric pressure were also taken at the
Western Peatland. Details of the environmental measure-
ments can be found in Lafleur et al. (2001, 2003), Syed et
al. (2006). Tower data were assessed for quality assurance
and gap-filling techniques were employed, as described by
Lafleur et al. (2005) for Mer Bleue and Syed et al. (2006) for
the Western Peatland.

Gross primary production (GPP) is the total amount of car-
bon that is fixed by plants. Approximations of GPP also
called GEP (Chapin et al., 2006, Moore et al., 2006) were
derived from micrometeorological eddy covariance measure-
ments of gross ecosystem productivity (GEP) i.e., NEE mi-
nus ER (Law et al., 2000). NEE is the carbon dioxide ex-
change of terrestrial ecosystems that is driven by the balance
between the sequestration of CO2 by photosynthesis and its
emission by soil and plants i.e. ecosystem respiration (Bubier
et al., 2003). GPP was estimated as:

GPP= NEE− ER (3)

Where GPP = gross primary productivity (g C m−2 d−1),
NEE = net ecosystem exchange (g C m−2 d−1), ER = ecosys-
tem respiration (g C m−2 d−1). The flux measurements were
collated on a half hourly time step and used to calculate a
mean daily value for 8-day time period’s consistent with the
8-day compositef PAR data from MODIS on the Terra (EOS
AM) satellite (Yang et al., 2006). The methodology used in
this study required that the field-measured data be compatible
with the 8-day period time step of the MODISf PAR data,
therefore there is a loss of the day-to-day variation (Sims et
al., 2005).

2.3 Satellite images

Terra (EOS AM) was launched in 1999 (Salomonson,
2002) and began producing the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) data, including MOD15A2
(f PAR) data, in 2000 (Myneni et al., 2002). MODIS has
thirty-six spectral bands including middle and long-wave
infrared (Savtchenko et al., 2003; Justice et al., 1998).
MODIS collection 4 data were used in this study, these
data were downloaded from the Land Processes Distributed
Active Archive Center athttp://edcimswww.cr.usgs.gov/pub/
imswelcome/. In the f PAR datasets for the Mer Bleue,
errors were recorded in mid summer from 2000 to 2003.
The code generating these data was found to contain a bug
however this does not invalidate the concept of the anal-
ysis. The MODIS quality control (QC) attributes these
errors to unclassified problems other than geometry (My-
neni et al., 2003). These problems led to highf PAR val-
ues ranging from between 1.0 and 2.5, The MODIS sys-
tem also malfunctioned in 2001 from Julian day 177 to 193
(Wan et al., 2004;http://daac.gsfc.nasa.gov/MODIS/Terra/
MODIS Terraoutages.shtml, 2005) resulting in a complete
loss of data for this period. On four occasions during 2003
and 2004f PAR values were unusually low. A data outage
accounts for one occasion in August 2004 (Kempler, 2005).
MODIS QC attributed the other three errors to data not pro-
duced at all (non-terrestrial biome) or the data were classi-
fied as sub-standard and to be used with caution (Myneni et
al., 2003). Erroroneous data were excluded from the calcula-
tions. Thef PAR values are composited over an 8-day period
and the value used is the highestf PAR value in that 8-day
period (Yang et al., 2006).

Each MODISf PAR image has a pixel resolution of 1 km2.
The footprint of an EC tower is∼1 km2 (Running et al.,
2004) however 80% of the flux comes from within 200 m
of the tower site (Lafleur personal communication, 2006).
Therefore, the measurements from the EC tower (NEE, ER
and ↓PAR) andf PAR from MODIS were obtained from
the same peatland area at each study site and could be used
to calculateε. Both the Mer Bleue bog and the Western
Peatland sites were classified as mixed forests in the IGBP
MODIS biome classification scheme (Lotsch et al., 2003).
However, to test the reliability of MODIS-derivedf PAR
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Fig. 1. Average daily↓PAR for an 8-day time period for the Mer
Bleue bog, Ontario, Ontario, (2000–2003) and for the Western Peat-
land, Alberta, (end 2003–2004).

values we used a simple Beers Law approach (Ahl et al.,
2005, Turner et al., 2005).

f PAR = 1 − exp(LAI (−k)) (4)

Where LAI is field measured data from Mer Bleue (Moore et
al., 2002 and Sonnentag et al., 2007) and k is an extinction
coefficient of 0.5. The algorithm associated with MODIS
f PAR uses a simple selection rule whereby the maximum
f PAR value over the 8-day period is chosen to be the rep-
resentative value for the output pixel (Heinsch et al., 2003).
The first day of the first compositing period is the 1st January
and the first day of the second compositing period is 9th Jan-
uary. The 8-day time step of the MODISf PAR product was
used as a template to calculate e. Throughout one calendar
year there are forty-five full 8-day compositing periods and
one 5-day compositing period at the end of the year.

Over 200 MODISf PAR images were acquired for the
Mer Bleue bog site (representing four years of data) and 65
for the Western Peatland site (representing one and a half
years of data). In order to extract thef PAR data it was nec-
essary to pre-process the images within Erdas Imagine. The
pre-processing included reprojecting thef PAR images from
the MODIS sinusoidal projection to Universal Transverse
Mercator (UTM) zone 18 for the Mer Bleue bog and UTM
zone 12 for the Western peatland with the World Geodetic
System (WGS) 84N datum using ERDAS IMAGINE soft-
ware (v. 8.5,ERDAS, Inc.) to enable extraction off PAR
values for each tower site (Lopes, 2003, Heumann, personal
communication, 2005). The data were imported to IdrisiTM
and subset to an area around each observation tower. A 1-
km2 mask was created over the tower area andf PAR data
were extracted for each tower pixel for all images over the
time period.

2.4 Variability inε

The variability inε is due to maintenance respiration costs
and sub optimal weather conditions (Heinsch et al., 2003).
The mean minimum daily temperature (Tmin) and VPD were

acquired from both the Mer Bleue bog and the Western Peat-
land datasets and plotted separately againstε to determine
the effects of each on theε. Saturated VPD was calculated
using the following formula (Snyder and Paw U, 2006)

es =

(
17.27T

T + 237.3

)
(5)

Wherees is saturated VPD (kPa) andT = temperature (◦C).
The VPD was then calculated fromes using relative hu-

midity data from both datasets in the following equation:

VPD =

(
es −

((
RH

100

)
× es

))
× 1000 (6)

Where RH is relative humidity.

3 Results and discussion

All results are presented as mean daily values for each 8-
day time step. Data for↓PAR, f PAR and GPP are shown
because they are the main constituents for derivingε and can
be used to explain the structure of the derivedε dataset.

3.1 Daily↓PAR

The plots of↓PAR against time (Fig. 1) show strong associ-
ation with Sun-Earth geometry. The maximum average daily
↓PAR for both the Mer Bleue bog and the Western Peat-
land ranges between 10 to 12 MJ m−2 d−1. These values are
slightly lower than those reported by Turner et al. (2003), but
both peatland sites reported here are located farther north.
The data are averaged out over 8-day periods, which means
that the day-to-day variation in↓PAR is not seen. Peak
↓PAR in 2000 was lower than the following years, perhaps
because 2000 was a wetter year (Bubier et al., 2003), and
therefore cloudier thus leading to a reduction in↓PAR.

3.2 MODISf PAR

The spatial resolution of both the tower and the MODIS
f PAR pixel is 1 km. The flux tower is located 200 m from
the western edge of the MODISf PAR pixel. However, since
80% of the flux comes from within 200 m of the tower, the
spatial resolution of the tower and the MODIS pixel were
deemed to be compatible. There is considerable variation
in MODIS f PAR over each growing season (Fig. 2), how-
ever the maximum values for each year are quite similar at
about 0.95. The uncertainty of whether or not the IGBP
biome misclassification had an effect on MODISf PAR for
the Mer Bleue was explored usingf PAR derived from late
summer field measured LAI using a simple Beers Law ap-
proach (Eq. 4).

Both Moore et al. (2002) and Sonnentag et al. (2007) re-
port that typical mid-August LAI values for bog and poor-
fen vegetation at the Mer Bleue bog site range from 1.30 to
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Fig. 2. MODIS fPAR data for Mer Bleue bog, Ontario (2000 to
2003) and for Western Peatland, Alberta (2003–2004) (46 and a bit
8-day time periods in a year).

2.13. Based on these values, the estimated canopyf PAR
(derived using Beer’s Law with an extinction coefficient of
0.5, 1−exp(1.3(−0.5))=0.48 and 1−exp(2.13(−0.5))=0.66)
would range from 0.48 to 0.66 (Frolking et al., 2002). As-
suming moss absorbs 85% of the remaining↓PAR (Frolking
et al., 2002) total canopyf PAR would then range from 0.92
to 0.95. The MODISf PAR data were consistent with the
LAI derived f PAR data from the field measurements. This
indicates that despite the IGBP misclassification for the Mer
Bleue, that there is little difference in the MODISf PAR val-
ues.

The f PAR values are strongly associated with sun-earth
geometry, but there is also a strong relationship with snow
cover. The increase inf PAR at Mer Bleue coincides with
the snow melt period in 2001 and 2002 however in 2000 and
2003 whenf PAR increases there was still around 20 cm of
snow on the ground (Roulet et al., 2007). Towards the end
of each year there is a downturn inf PAR over several com-
positing periods, probably due to the presence of snow on the
bog. Thef PAR results for the Western Peatland have similar
maximum summer values as the Mer Bleue bog at∼0.95.

However the winter values for 2002 and 2003 are very dif-
ferent as there are few very lowf PAR. Since GPP is very
low during this time there is no impact on theε calculation.
Thef PAR values at the Western Peatland do depict the same
trend as those at the Mer Bleue. They do not go to zero dur-
ing the winter probably because it is a treed fen. The trees
will always absorb some↓PAR and thus rarely go to zero,
this is assuming winter starts on Julian day 335 and ends on
Julian day 59 then the range of winterf PAR values is from
0.09 to 0.40.

There was uncertainty surrounding a number of data points
in Fig. 2, as they did not conform to expected patterns.
Turner et al. (2005) foundf PAR to be stable in summer time
and therefore large, short-term differences suggest problems
with the source data. In early 2001,f PAR was reduced to
zero for two consecutive 8-day periods. The MODIS QC
data were examined and this issue was identified as occur-

VPD vs Light Use Efficency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 400 800 1200

VPD (Pa)

ε  
g

C
 m

2
 8

-d
a
y
 c

o
m

p
o

s
it

e

 

Fig. 3. The relationship between Light Use Efficiency and VPD at
the Mer Bleue.

ring due to a malfunction in the MODIS sensor (Wan et al.,
2004). During the growing season there are occasions when
f PAR is low resulting in highε values. Thef PAR values
may be low for a number of reasons such as cloud contami-
nation (Running et al., 2004) and sensor problems (Myneni
et al., 2003). At the Western Peatland lowf PAR values were
present for two consecutive 8-day compositing periods dur-
ing September 2004. Thef PAR values for these two peri-
ods were 0.19 and 0.01. MODIS QC attributed these low
values to failure of the main (RT) method (Myneni et al.,
2003). Normallyf PAR values should fall between 0 and
1, however on a number of occasionsf PAR values were
greater than 1. The reason for these highf PAR values is
related to sensor failure. Both the very lowf PAR values
for the Western Peatland andf PAR values greater than 1 at
the Mer Bleue were excluded in this study. Future work us-
ing MODISf PAR will use the de-bugged data from Boston
University: ftp://primavera.bu.edu/pub/datasets/MODIS/.

3.3 Growth limiting factors: VPD and Tmin

VPD was calculated using Eqs. 5 and 6 with the data for both
Mer Bleue and the Western Peatland. The VPD for the Mer
Bleue was then plotted againstε. At the Mer Bleue the VPD
was not a limiting factor onε (Fig. 3). This may be due to
the high water tables found at each site. However, Tmin was
a limiting factor onε at both sites. When Tmin was plotted
againstε it was clear that low temperatures affectε (Fig. 4).
When the mean daily temperature drops below−6◦C at the
Mer Bleue and−10.6◦C at the Western peatland it becomes
too cold for the plants to function andε is reduced to zero
because the plants are not converting light into GPP. The
temperature threshold difference between the two sites was
not examined in detail however the difference could be at-
tributed to the type of vegetation. The dominance of sphag-
num mosses at the Mer Bleue site may be the cause of the
higher temperature threshold. The physiological structure
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Fig. 4. The relationship between Mean minimum daily temperature
(Tmin) and Epsilon at the Mer Bleue (p=0.000).
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Fig. 5. Average daily GPP for an 8-day time period (46 and a bit
8-day time periods in a year) for the Mer Bleue bog, Ontario, (2000–
2003) and for the Western Peatland, Alberta, (end 2003–2004).

of the mosses means that they cannot control their internal
water content and cold temperatures will also exert more of
an affect on these plants as they do not have well developed
vascular systems (Busby et al., 1978; Bisbee, et al., 2001).
The dominant vegetation at the Western Peatland isPicea
marianaandLarix laricina. These trees are physiologically
adapted to colder temperatures and the may explain why the
temperature threshold is lower at this site (Loehle, 1998).

3.4 Gross primary production

GPP was calculated using Eq. (3) and NEE and ER data.
The maximum daily 8-day average GPP at Mer Bleue for
the four years reported was about 5 g C m−2 d−1 (Fig. 5),
whereas the maximum for the Western Peatland was about
8.5 g C m−2 d−1 (Fig. 5). The difference between these val-
ues is statistically significant (p=0.000). At both sites there
was a seasonal pattern that followed trends in↓PAR and
f PAR. GPP is reduced to zero in winter because snow cover
and low temperatures reduce photosynthesis to zero. Conse-
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Fig. 6. Water table at Mer Bleue in 2000 (solid line) versus 2001
(dashed line).

quently measured NEE directly reflects ER. GPP starts to ac-
cumulate when the snow season ends which is usually at the
end of March or early April for the Mer Bleue bog (Lafleur
at al., 2003) and around the same time for the Western Peat-
land. The peak GPP at Mer Bleue varies between years, in
2001 and 2003 it was earlier in the season than in 2000 and
2002. The maximum 8-day average GPP values for all years
varied from 4.5 g C m−2 d−1 to 5 g C m−2 d−1, with the high-
est occurring in 2002. This variation might be attributed to
weather conditions e.g. 2000 was a much wetter year than
2001 (Bubier et al., 2003) this can be seen in Fig. 6. where
the water table in 2000 is clearly nearer the surface than in
2001. However, the evidence suggests that the variation in
GPP between the four years at the Mer Bleue is not statisti-
cally significant. (p=0.706) therefore uncertainty surround-
ing the effect of weather conditions on GPP during each year
can be deemed in the case of these data to have little effect.
The length of the growing season is similar for both sites
but GPP was considerably higher at treed Western Peatland
where the maximum 8-day average GPP value for 2004 was
8.25 g C m−2 d−1.

3.5 Light use efficiency parameter (ε)

As expected the light use efficiency parameter for both sites
followed the seasonal patterns of↓PAR,f PAR and GPP. The
maximumε value for each of the four years at the Mer Bleue
bog ranges from 0.71 g C MJ−1 in 2000 to 0.78 g C MJ−1 in
2003 (Fig. 7). The maximum value in 2002 was much lower
at around 0.60 g C MJ−1. In order to determine the start, end
and time of peak of the growing season for each year a curve
was fitted through the data (Fig. 7):

ε
′

= a + b × cos(ct + d) (7)

whereε′ = estimatedε parameter value, t = day of year and
a, b, c, andd are fitting parameters. The parameters were
interpreted such thata andb reflect the magnitude of the peak
εmax value for each year.c reflects the length of the growing
season (the smallerc is the longer the growing season) andd
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Fig. 7. Comparison of fitted line from Eq. (5) and the peakε for the
Mer Bleue (2000 to 2003) and at Western Peatland (2003 to 2004).

reflects when the peak value occurs (a, b, c andd are unitless
values) (Table 1).

The growing season begins and ends at Mer Bleue at sim-
ilar times in every year except 2001 when it ends much later
(Fig. 8). At the Western Peatland, it starts slightly later
and ends much earlier than at Mer Bleue. The Mer Bleue
bog εmax is interesting, in 2000 and 2003, the pattern be-
tween both curves is almost the same especially around mid-
summer. In 2002, the pattern is very similar but theεmax
is lower. In 2001, a drier than normal year (Bubier et al.,
2003), theεmax is later and much lower (Fig. 8). Various
weather patterns may explain the differing peaks and grow-
ing season lengths, for example 2001 was very dry (Bubier
et al., 2003), in Fig. 8, the peak epsilon value on the curve
is ∼0.41 g C MJ−1, about 0.1 g C MJ−1 lower than the other
three years. This peak also occurs two to three weeks later
than in the other years. However, these differences are not
statistical significant (p=0.709). Theεmax in 2004, for the
Western peatland occurs slightly earlier in the year and is
∼50% higher than at Mer Bleue. This pattern can also be
found in the measured data whereεmax at Western Peat-
land is higher than that at Mer Bleue, 0.91g C MJ−1 versus
0.78 g C MJ−1. The reason for this is due to the greater pro-
ductivity of trees at the Western peatland site.

Early work with theε approach assumed a constantε

but later studies have shown that there is variation between
biomes and throughout the year (Turner et al., 2003; Ahl et
al., 2004; Brogaard et al., 2005). Our results found thatε var-
ied throughout the year and followed a fairly predictable sea-
sonal pattern. The average growing season at Mer Bleue is
from May to September and at the Western Peatland is from
May to October (Lafleur et al., 2003; Syed et al., 2006).

A number of factors can affect the photosynthetic effi-
ciency of plants, influencingε, such as in-situ environmental
conditions: soil moisture, water table position (Lafleur et al.,
2003), nutrient availability and weather conditions. There
is some uncertainty around how individual species respond
to different condition however in this study we are captur-
ing the ecosystem response thus the responses of individual
species are averaged out.ε (believed to be constant, Mon-
teith, 1972; Potter et al., 2003) can be attenuated by tem-
perature and vapour pressure deficit (VPD) limitations (Run-

 

Fig. 8. Curves fitted to the data estimating the length of the
growing season, the peak value (εmax), and the peak occurrence.
(�=MB 2000,�=MB 2001,N=MB 2002.©=MB 2003).

Table 1. The parameter values (unitless) for the curves estimat-
ing growing season length, peak and peak occurrence (a andb=the
magnitude of the peak LUE value for each year,c=the length of the
growing season (the smaller c is the longer the growing season) and
d=when the peak value occurs).

Mer Bleue Western
Peatland

Parameters 2000 2001 2002 2003 2004

a 0.218 0.178 0.2 0.198 0.389
b 0.235 0.195 0.215 0.219 0.447
c 0.018 0.015 0.017 0.017 0.019
d −3.733 −3.374 −3.736 −3.539 −4.164

ning et al., 2000). An examination of the data used in this
study indicated that, for both sites in Canada, low tempera-
tures reducedε relative toεmax but that VPD had no effect.
At Mer Bleue, as the temperature approached−6 to −7◦C
ε is close to zero and beyond−10◦C ε is reduced to zero.
Similarly at the Western Peatland in 2004 as the temperature
nears−9.5◦C ε is close to zero and beyond−10.5◦C ε is re-
duced to zero. Theεmax occurs in mid summer and ranges
from between 0.58 g C MJ−1 and 0.78 g C MJ−1 for the Mer
Bleue bog for the years 2000 to 2003 and was 0.91 g C MJ−1

for the Western Peatland in 2004.
The averageε for the snow free period (April to Novem-

ber) for the Mer Bleue bog over the four years was
0.27 g C MJ−1 and for the Western Peatland for 2004 was
0.39 g C MJ−1. The average growing season (May to
September, Lafleur et al., 2003)ε for the Mer Bleue bog
ranged between 0.32 g C MJ−1 in 2001 to 0.38 g C MJ−1

in 2003 and the growing season (May through October,
Syed et al., 2006)ε in 2004 for the Western Peatlands was
0.57 g C MJ−1. These average growing season values are
comparable to the growing season value for a forested wet-
land in northern Wisconsin of 0.37 g C MJ−1 (Ahl et al.,
2004).
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4 Conclusions

The LUE was derived for two Canadian peatland sites us-
ing satellite and flux tower data. The spatial and tem-
poral variation ofεmax between the Western peatland site
(0.91 g C MJ−1) and the Mer Bleue site (0.78 g C MJ−1) may
be attributed to differences in the climate and vegetation at
each site. There are some truncated records of LAI for the
Mer Bleue however there is no LAI data for the Western
Peatland therefore the use of satellite derived MODISf PAR,
which can be substituted for LAI, is advantageous. Midsum-
mer MODISf PAR performed as expected when compared
to LAI derivedf PAR calculated using Beer’s law and pub-
lished data for the Mer Bleue. This method which combines
satellite data with flux tower observations could lead to the
characterisation ofε andεmax not only for other peatlands
but also for different biomes.

Acknowledgements.We would like to extend thanks to Enterprise
Ireland for supporting this work through the International Collabo-
ration Travel Support grant and Shane Colgan of the Environmental
Protection Agency (Ireland) for the Short Term Research Mission
grant both of which enabled this research to be conducted at McGill
University, Canada. We also wish to thank Lawrence B. Flanagan
and the Fluxnet Canada Research Network for providing the
Western Peatland data.

Edited by: A. Arneth

References

Ahl, D. E., Gower, S. T., Mackay, D. S., Burrows, S. N., Norman,
J. M., and Diak, G. R.: Heterogeneity of light use efficiency in
a northern Wisconsin forest: implications for modelling net pri-
mary production with remote sensing, Remote Sens. Environ.,
93, 168–178., 2004.

Ahl, D. E., Gower, S. T., Mackay, D. S., Burrows, S. N., Norman, J.
M., and Diak, G. R.: The effects of aggregated land cover data on
estimating NPP in northern Wisconsin, Remote Sens. Environ.,
97, 1–14, 2005.

Albritton, D. L. and Meira Filho, L. G.: Technical summary of the
working group I to the third assessment report of the intergovern-
mental panel of climate change, Cambridge: Intergovernmental
Panel of Climate Change, 21–83, 2001.

Arneth, A., Kurbatova, J., Kolle, O., Shistova, O. B., Lloyd, J., Vy-
godskaya, N. N., and Schulze, E.-D.: Comparative ecosystem–
atmosphere exchange of energy and mass in a European Russian
and a central Siberian bog II. Interseasonal and interannual vari-
ability of CO2 fluxes, Tellus, 54B, 514–530, 2002.

Aurela, M., Laurila, T., and Tuovinen, J.-P.: Annual CO2 bal-
ances of a subarctic fen in northern Europe: Importance
of the wintertime efflux, J. Geophys. Res., 107(D21), 4607,
doi:10.1029/2002JD002055, 2002.

Bisbee, K. E., Gower, S. T., Norman, J. M., and Nordheim, E. V.:
Environmental controls on ground cover species composition and
productivity in a boreal black spruce forest, Oecologia, 129, 261–
270, 2001.

Brogaard, S., Runnstrom, M., and Seaquist, J. W.: Primary pro-
duction of Inner Mongolia, China, between 1982 and 1999 es-
timated by a satellite data-driven light use efficiency model,
Global Planet Change, 45, 313–332, 2005.

Bubier, J. L., Bhatia, G., Moore, T. R., Roulet, N. T., and Lafleur,
P. M.: Spatial and temporal variability in growing season net
ecosystem carbon dioxide exchange at a large peatland in On-
tario, Canada, Ecosystems, 6, 353–367, 2003.

Busby, J. R., Bliss, L. C., and Hamilton, C. D.: Microclimate con-
trol of growth rates and habitats of the boreal forest mosses,To-
menthypnum nitensandHylocomium splendens, Ecol. Monogr.,
48, 95–110, 1978.

Coursolle, C., Margolis, H., Barr, A., et al.: Late-summer carbon
fluxes from Canadian forests and peatlands along an east-west
continental transect, Can. J. Forest Res., 36, 783–800, 2006.

Doraiswamy, P., Muratova, N., Sinclair, T., Sterm, A., and Akhme-
dov, B.: Evaluation of MODIS Data for assessment of regional
spring wheat yield in Kazakhstan, Digest ofIGARSS1, 487–490,
Piscataway, NJ: IEEE, 2002.

Fan, S.-M., Goulden, M. L., Munger, J. W., Daube, B. C., Bakwin,
P. S., Wofsy, S. C., Amthor, J. S., Fitzjarrald, D. R., Moore, K. E.,
and Moore, T. R.: Environmental controls on the photosynthesis
and respiration of a boreal lichen woodland: a growing season of
whole-ecosystem exchange measurements by eddy correlation,
Oecologia, 102, 443–452, 1995.

Fensholt, R., Sandholt, I., and Rasmussen, S.: Evaluation of
MODIS LAI, fAPAR and the relation between fAPAR and NDVI
in a semi-arid environment using in situ methods, Remote Sens.
Environ., 91, 490–507, 2004.

Frolking, S., Roulet, N. T., Moore, T. R., Lafleur, P. M., Bubier, J.
L., and Crill, P. M.: Modeling seasonal to annual carbon balance
of Mer Bleue Bog, Ontario, Canada, Global Biogeochem. Cy.,
16(3), 1030, doi:10.1029/2001GB001457, 2002.

Goetz, S. J. and Prince, S. D.: Variability in carbon exchange and
light utilization among boreal forest stands: implications for re-
mote sensing of net primary production, Can. J. Forest Res., 23,
243–251, 1998.

Goetz, S. J. and Prince, S. D.: Modelling terrestrial carbon ex-
change and storage: evidence and implications of functional
convergence in light-use efficiency, Adv. Ecol. Res., 28, 57–92,
1999.

Goetz, S. J., Prince, S. D., Goward, S. N., Thawley, M. M., and
Small, J.: Satellite remote sensing of primary production: an im-
proved production efficiency modelling approach, Ecol. Model,
122, 239–255, 1999.

Gorham, E.: Northern Peatlands: role in the carbon cycle and prob-
able responses to climatic warming, Ecol. Appl., 1, 182–192,
1991.

Gorham, E., Janssens, J. A., and Glaser, P. H.: Rates of peat ac-
cumulation during the postglacial period in 32 sites from Alaska
to Newfoundland, with special emphasis on northern Minnesota,
Can. J. Bot., 81, 429–438, 2003.

Gower, S. T., Kucharik, C. J., and Norman, J. M.: Direct and in-
direct estimation of leaf area index,f APAR and net primary
production of terrestrial ecosystems, Remote Sens. Environ., 70,
29–51, 1999.

Heinsch, F. A., Reeves, M., Votava, P., Kang, S., Milesi, C., Zhoa,
M., Glassy, J., Jolly, W. M., Loehman, R., Bowker, C. F., Kim-
ball, J. S., Nemani, R. R., and Running, S. W.: User’s Guide

Biogeosciences, 6, 225–234, 2009 www.biogeosciences.net/6/225/2009/



J. Connolly et al.: Peatland light use efficiency derived from MODISf PAR and flux 233

GPP and NPP (MOD17A2/A3) products NASA MODIS land al-
gorithm, USGS-NASA – Technical Report, 2003.

Hodges, J.: MODIS MOD12 Land cover and land cover dy-
namics products user guide,http://geography.bu.edu/landcover/
userguidelc/index.html, 2002.

Hunt Jr., E. R.: Relationship between woody biomass and PAR
conversion efficiency for estimating net primary production from
NDVI, Int. J. Remote Sens., 15, 1725–1730, 1994.

Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy,
D. P., Hall, D. K., Salomonson, V., V., Privette, J. L., Riggs,
G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Run-
ning, S. W., Nemani, R. R., Wan, Z., Huete, A. R., Van Leeuwen,
W., Wolfe, R. E., Giglio, L., Muller, J.-P., Lewis, P., and Barns-
ley, M. J.: The moderate resolution imaging spectroradiometer
(MODIS): land remote sensing for global change research, IEEE
T. Geosci. Remote, 36, 1228–1235, 1998.

Kimball, J. S., Keyser, A. R., Running, S. W., and Saatchi, S. S.:
Regional assessment of boreal forest productivity using an eco-
logical process model and remote sensing parameter maps, Tree
Physiol., 20, 761–775, 2000.

Lafleur, P. M., Roulet, N. T., and Admiral, S. W.: Annual cycle of
CO2 exchange at a bog peatland, J. Geophys. Res., 106, 3071–
3081, 2001.

Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S., and Moore,
T. R.: Interannual variability in the peatland-atmosphere carbon
dioxide exchange at an ombrotrophic bog, Glob. Biogeochem.
Cy., 17(2), 1036, doi:10.1029/2002GB001983, 2003.

Lafleur, P. M., Moore, T. R. Roulet, N. T., and Frolking, S.: Ecosys-
tem respiration in a cool temperate bog depends on peat temper-
ature but not water table, Ecosystems, 8, 619–629, 2005.

Law, B. E., Waring, R. H., Anthoni, P. M., and Aber, D.: Mea-
surements of gross and net ecosystem productivity and water
vapour exchange of a Pinus ponderosa ecosystem, and an evalua-
tion of two generalized models, Glob. Change Biol., 6, 155–168,
doi:10.1046/j.1365-2486.2000.00291.x, 2000.

Lobell, D. B., Hicke, J. A., Asner, G. P., Field, C. B., Tucker, C.
J., and Los, S.O.: Satellite estimates of productivity and light use
efficiency in United States agriculture, 1982–1998, Glob. Change
Biol., 8, 722–735, doi:10.1046/j.1365-2486.2002.00503.x, 2002.

Loehle, C.: Height growth rate tradeoffs determine northeren and
southern range limits for tree, J. Biogeogr., 25, 735–742, 1998.

Lopes, P., Lorenço. P., Carvalhais, N., and Seixas, J.: MODIS land
cover product validation in the Iberian peninsula, Geosci. Re-
mote Sens. Symp., (IGARSS 03), 3, 1733–1735, 2003.

Lotsch, A., Tian, Y., Friedl, M. A., and Myneni, R. B.: Land
cover mapping in support of LAI andf PAR retrievals from EOS-
MODIS and MISR: classification methods and sensitivities to er-
rors, Int. J. Remote Sens., 24, 1997–2016, 2003.
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