28 research outputs found

    Glucose challenge metabolomics implicates medium-chain acylcarnitines in insulin resistance

    Get PDF
    Insulin resistance (IR) predisposes to type 2 diabetes and cardiovascular disease but its causes are incompletely understood. Metabolic challenges like the oral glucose tolerance test (OGTT) can reveal pathogenic mechanisms. We aimed to discover associations of IR with metabolite trajectories during OGTT. In 470 non-diabetic men (age 70.6 ± 0.6 years), plasma samples obtained at 0, 30 and 120 minutes during an OGTT were analyzed by untargeted liquid chromatography-mass spectrometry metabolomics. IR was assessed with the hyperinsulinemic-euglycemic clamp method. We applied age-adjusted linear regression to identify metabolites whose concentration change was related to IR. Nine trajectories, including monounsaturated fatty acids, lysophosphatidylethanolamines and a bile acid, were significantly associated with IR, with the strongest associations observed for medium-chain acylcarnitines C10 and C12, and no associations with L-carnitine or C2-, C8-, C14- or C16-carnitine. Concentrations of C10- and C12-carnitine decreased during OGTT with a blunted decline in participants with worse insulin resistance. Associations persisted after adjustment for obesity, fasting insulin and fasting glucose. In mouse 3T3-L1 adipocytes exposed to different acylcarnitines, we observed blunted insulin-stimulated glucose uptake after treatment with C10- or C12-carnitine. In conclusion, our results identify medium-chain acylcarnitines as possible contributors to IR

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    ESR2 expression in subcutaneous adipose tissue is related to body fat distribution in women, and knockdown impairs preadipocyte differentiation

    No full text
    Oestrogen receptor 2 (ESR2) expression has been shown to be higher in subcutaneous adipose tissue (SAT) from postmenopausal compared to premenopausal women. The functional significance of altered ESR2 expression is not fully known. This study investigates the role of ESR2 for adipose tissue lipid and glucose metabolism. SAT biopsies were obtained from 44 female subjects with or without T2D. Gene expression of ESR2 and markers of adipose function and metabolism was assessed. ESR2 knockdown was performed using CRISPR/Cas9 in preadipocytes isolated from SAT of females, and differentiation rate, lipid storage, and glucose uptake were measured. ESR2 expression was inversely correlated with measures of central obesity and expression of some fatty acid oxidation markers, and positively correlated with lipid storage and glucose transport markers. Differentiation was reduced in ESR2 knockdown preadipocytes. This corresponded to reduced expression of markers of differentiation and lipogenesis. Glucose uptake was reduced in knockdown adipocytes. Our results indicate that ESR2 deficiency in women is associated with visceral adiposity and impaired subcutaneous adipocyte differentiation as well as glucose and lipid utilization. High ESR2 expression, as seen after menopause, could be a contributing factor to SAT expansion. This may support a possible target to promote a healthy obesity phenotype

    CABLES1 expression is reduced in human subcutaneous adipose tissue in obesity and type 2 diabetes but may not directly impact adipocyte glucose and lipid metabolism

    No full text
    Cdk5 and Abl enzyme substrate 1 (CABLES1) is a cell cycle regulator that has previously been identified as a candidate gene for obesity-related phenotypes, but little is known about its role in adipose tissue metabolism. In this study, we explore the role of CABLES1 in obesity and type 2 diabetes (T2D) in human subcutaneous adipose tissue (SAT). We performed gene expression analysis of SAT obtained from subjects with and without T2D, and from a second validation cohort consisting of subjects without T2D. We used CRISPR/Cas9 genome editing to perform CABLES1 loss-of-function studies in human primary preadipocytes and assessed them functionally after differentiation. CABLES1 gene expression in SAT was decreased in T2D by almost 25%, and inversely associated with insulin resistance markers and hyperglycaemia. mRNA levels were reduced with increasing BMI and negatively correlated with obesity markers. We found that adipocytes are likely the main CABLES1-expressing cell type in SAT, but CABLES1 depletion in adipocytes caused no phenotypical changes in regards to differentiation, glucose uptake, or expression of key genes of adipocyte function. These findings suggest that CABLES1 gene expression in SAT might be altered in obesity and T2D as a consequence of metabolic dysregulation rather than being a causal factor

    Response of multiple hormones to glucose and arginine challenge in T2DM after gastric bypass

    Get PDF
    Purpose: In patients with type 2 diabetes mellitus (T2DM), Roux-en-Y gastric bypass (RYGB) leads to beneficial metabolic adaptations, including enhanced incretin secretion, beta-cell function, and systemic insulin sensitivity. We explored the impact of RYGB on pituitary, pancreatic, gut hormones, and cortisol responses to parenteral and enteral nutrient stimulation in patients with obesity and T2DM with repeated sampling up to 2 years after intervention. Methods: We performed exploratory post hoc analyses in a previously reported randomized trial. Levels of adrenocorticotropic hormone (ACTH), cortisol, growth hormone (GH), glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY), ACTH, insulin, and glucagon were measured in 13 patients with T2DM and obesity at four different visits: before and 4, 24, and 104 weeks after RYGB; and in three sequential conditions on the same day: fasting, intravenous arginine challenge, and OGTT. Results: RYGB surprisingly induced a rise in ACTH, cortisol, and GH levels upon an oral glucose load, together with enhanced GLP-1 and PYY responses. Fasting and postarginine GH levels were higher after RYGB, whereas insulin, glucagon, GLP-1, GIP, and cortisol were lower. These endocrine adaptations were seen as early as 4 weeks after surgery and were maintained for up to 2 years. Conclusion: These findings indicate adaptations of glucose sensing mechanisms and responses in multiple endocrine organs after RYGB, involving the gut, pancreatic islets, the pituitary gland, the adrenals, and the brain

    Interleukin-33 inhibits glucose uptake in human adipocytes and its expression in adipose tissue is elevated in insulin resistance and type 2 diabetes

    No full text
    OBJECTIVE: Interleukin-33 (IL-33) is associated with obesity-related inflammation. We aim to investigate IL-33 expression in subcutaneous adipose tissue (SAT) in type 2 diabetes (T2D) subjects and its effects on human adipocyte glucose uptake. METHODS: Expression of IL-33 was analysed in SAT from cohort studies including subjects with and without obesity and T2D and correlated with insulin resistance and obesity markers. Magnetic resonance imaging (MRI) of tissue fat volumes was performed. We investigated the effects of IL-33 treatment on ex vivo adipocyte glucose uptake. RESULTS: T2D subjects had higher IL-33 gene and protein expression in SAT than the control subjects. IL-33 mRNA expression was positively correlated with markers of dysglycemia (e.g. HbA1c), insulin resistance (e.g. HOMA-IR) and adiposity (BMI, visceral adipose tissue volume, liver and pancreas fat %). In multiple linear regression analyses, insulin resistance and T2D status were the strongest predictors of IL-33, independent of BMI. IL-33 mRNA expression was negatively correlated with expression of genes regulating adipocyte glucose uptake, lipid storage, and adipogenesis (e.g.glucose transporter 1 and 4 (GLUT1/4), fatty acid binding protein 4 (FABP4), and PPARG). Additionally, incubation of SAT with IL-33 reduced adipocyte glucose uptake and GLUT4 gene and protein expression. CONCLUSIONS: Our findings suggest that T2D subjects have higher IL-33 gene and protein expressionin SATthan control subjects, which is associated with insulin resistance and reduced gene expression of lipid storage and adipogenesis markers. IL-33 may reduce adipocyte glucose uptake. This opens up a potential pharmacological route for reversing insulin resistance in T2D and prediabetes

    Detailed Functional Characterization of a Waist-Hip Ratio Locus in 7p15.2 Defines an Enhancer Controlling Adipocyte Differentiation

    No full text
    We combined CAGE sequencing in human adipocytes during differentiation with data from genome-wide association studies to identify an enhancer in the SNX10 locus on chromosome 7, presumably involved in body fat distribution. Using reporter assays and CRISPR-Cas9 gene editing in human cell lines, we characterized the role of the enhancer in adipogenesis. The enhancer was active during adipogenesis and responded strongly to insulin and isoprenaline. The allele associated with increased waist-hip ratio in human genetic studies was associated with higher enhancer activity. Mutations of the enhancer resulted in less adipocyte differentiation. RNA sequencing of cells with disrupted enhancer showed reduced expression of established adipocyte markers, such as ADIPOQ and LPL, and identified CHI3L1 on chromosome 1 as a potential gene involved in adipocyte differentiation. In conclusion, we identified and characterized an enhancer in the SNX10 locus and outlined its plausible mechanisms of action and downstream targets

    Effects of the second-generation antipsychotic drugs aripiprazole and olanzapine on human adipocyte differentiation

    No full text
    Second-generation antipsychotics (SGAs), used as the cornerstone treatment for schizophrenia and other mental disorders, can cause adverse metabolic effects (e.g. obesity and type 2 diabetes). We investigated the effects of SGAs on adipocyte differentiation and metabolism. The presence of therapeutic concentrations of aripiprazole (ARI) or its active metabolite dehydroaripiprazole (DARI) during human adipocyte differentiation impaired adipocyte glucose uptake while the expression of gene markers of fatty acid oxidation were increased. Additionally, the use of a supra-therapeutic concentration of ARI inhibited adipocyte differentiation. Furthermore, olanzapine (OLA), a highly obesogenic SGA, directly increased leptin gene expression but did not affect adipocyte differentiation and metabolism. These molecular insights are novel, and suggest that ARI, but not OLA, may directly act via alterations in adipocyte differentiation and potentially by causing a switch from glucose to lipid utilization in human adipocytes. Additionally, SGAs may effect crosstalk with other organs, such as the brain, to exert their adverse metabolic effects

    Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes : Deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism

    No full text
    CRISPR/Cas9 has revolutionized the genome-editing field. So far, successful application in human adipose tissue has not been convincingly shown. We present a method for gene knockout using electroporation in preadipocytes from human adipose tissue that achieved at least 90% efficiency without any need for selection of edited cells or clonal isolation. We knocked out the FKBP5 and PPARG genes in preadipocytes and studied the resulting phenotypes. PPARG knockout prevented differentiation into adipocytes. Conversely, deletion of FKBP51, the protein coded by the FKBP5 gene, did not affect adipogenesis. Instead, it markedly modulated glucocorticoid effects on adipocyte glucose metabolism and, furthermore, we show some evidence of altered transcriptional activity of glucocorticoid receptors. This has potential implications for the development of insulin resistance and type 2 diabetes. The reported method is simple, easy to adapt, and enables the use of human primary preadipocytes instead of animal adipose cell models to assess the role of key genes and their products in adipose tissue development, metabolism and pathobiology

    Effects of the second-generation antipsychotic drugs aripiprazole and olanzapine on human adipocyte differentiation

    No full text
    Second-generation antipsychotics (SGAs), used as the cornerstone treatment for schizophrenia and other mental disorders, can cause adverse metabolic effects (e.g. obesity and type 2 diabetes). We investigated the effects of SGAs on adipocyte differentiation and metabolism. The presence of therapeutic concentrations of aripiprazole (ARI) or its active metabolite dehydroaripiprazole (DARI) during human adipocyte differentiation impaired adipocyte glucose uptake while the expression of gene markers of fatty acid oxidation were increased. Additionally, the use of a supra-therapeutic concentration of ARI inhibited adipocyte differentiation. Furthermore, olanzapine (OLA), a highly obesogenic SGA, directly increased leptin gene expression but did not affect adipocyte differentiation and metabolism. These molecular insights are novel, and suggest that ARI, but not OLA, may directly act via alterations in adipocyte differentiation and potentially by causing a switch from glucose to lipid utilization in human adipocytes. Additionally, SGAs may effect crosstalk with other organs, such as the brain, to exert their adverse metabolic effects.This work was supported by research grants from the European Commission via the Marie Sklodowska Curie Innovative Training Network TREATMENT (H2020-MSCA-ITN-721236), Swedish Diabetes Foundation, the Excellence of Diabetes Research in Sweden (EXODIAB), Family Ernfors Foundation, the P.O. Zetterling Foundation, Swedish Society for Medical Research, Novo Nordisk Foundation, Agnes and Mac Rudbergs Foundation, and the Uppsala University Hospital ALF grants
    corecore