193 research outputs found
Arthroscopic Treatment of Acetabular Retroversion With Acetabuloplasty and Subspine Decompression: A Matched Comparison With Patients Undergoing Arthroscopic Treatment for Focal Pincer-Type Femoroacetabular Impingement.
BackgroundGlobal acetabular retroversion is classically treated with open reverse periacetabular osteotomy. Given the low morbidity and recent success associated with the arthroscopic treatment of femoroacetabular impingement (FAI), there may also be a role for arthroscopic treatment of acetabular retroversion. However, the safety and outcomes after hip arthroscopic surgery for retroversion need further study, and the effect of impingement from the anterior inferior iliac spine (subspine) in patients with retroversion is currently unknown.HypothesisArthroscopic treatment for global acetabular retroversion will be safe, and patients will have similar outcomes compared with a matched group undergoing arthroscopic treatment for focal pincer-type FAI.Study designCohort study; Level of evidence, 2.MethodsPatients undergoing hip arthroscopic surgery for symptomatic global acetabular retroversion were prospectively enrolled and compared with a matched group of patients undergoing arthroscopic surgery for focal pincer-type FAI. Both groups underwent the same arthroscopic treatment protocol. All patients were administered patient-reported outcome (PRO) measures, including the 12-item Short-Form Health Survey (SF-12) Physical Component Summary (PCS) and a Mental Component Summary (MCS), modified Harris Hip Score (mHHS), Hip disability and Osteoarthritis Outcome Score (HOOS), and visual analog scale (VAS) for pain preoperatively and at 1 year postoperatively.ResultsThere were no differences in age, sex, or body mass index between 39 hips treated for global acetabular retroversion and 39 hips treated for focal pincer-type FAI. There were no major or minor complications in either group. Patients who underwent arthroscopic treatment for global acetabular retroversion demonstrated similar significant improvements in postoperative PRO scores (scores increased by 17 to 43 points) as patients who underwent arthroscopic treatment for focal pincer-type FAI. Patients treated for retroversion who also underwent subspine decompression had greater improvement than patients who did not undergo subspine decompression for the HOOS-Pain (33.7 ± 15.3 vs 22.5 ± 17.6, respectively; P = .046) and HOOS-Quality of Life (49.7 ± 18.8 vs 34.6 ± 22.0, respectively; P = .030) scores.ConclusionArthroscopic treatment for acetabular retroversion is safe and provides significant clinical improvement similar to arthroscopic treatment for pincer-type FAI. Patients with acetabular retroversion who also underwent arthroscopic subspine decompression demonstrated greater improvements in pain and quality of life outcomes than those who underwent arthroscopic treatment without subspine decompression
Pin fin two-phase micro gap coolers for concentrating photovoltaic arrays
Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.Concentrating photovoltaic (CPV) systems are among the most promising renewable power generation options but will require aggressive thermal management to prevent elevated solar cell temperatures and to achieve the conversion efficiency, reliability, and cost needed to compete with alternative techniques. Two-phase, evaporative cooling of
CPV modules has been shown to provide significant advantages relative to single-phase cooling but, to date, the available two-phase data has been insufficient for the design and optimization of such CPV systems. This Keynote lecture will begin with a brief review of CPV technology and the solar cell cooling techniques described in the literature. Energy modeling, relating the harvested solar energy to the “parasitic” work expended to provide the requisite cooling, will be used to support the efficacy of twophase cooling for CPV applications. Attention will then turn to the available correlations for pin-finned microgap coolers and the gaps which must be addressed to enable such thermal management for CPV arrays. This will be followed by a detailed description of an experimental study of 3 pin-finned
microgap coolers for CPV systems and the derived heat transfer and pressure drop correlations. The data spans a large parametric range, with heat fluxes of 1 - 170 W/cm2, mass fluxes of 10.7 - 1300 kg/m2-s, subcooled (single phase) flow as well as exit qualities up to 90%, and 3 heat transfer fluids
(water, HFC-134a, HFE-7200). The lecture will close with a brief case study of two-phase CPV cooling, demonstrating that the application of this thermal management mode can lead to a highly energy efficient CPV system.dc201
FOOT PRONATION AND STRESS FRACTURES OF THE FEMUR AND TIBIA: A PROSPECTIVE BIOMECHANICAL STUDY
The relation between foot pronation and stress fractures has been suggested. However, evidence based literature is lacking and contradictory. The purpose of this study was to
examine whether dynamic parameters of foot pronation are related to the development of stress fractures of the femur and tibia. 2 weeks prior to beginning of 14 weeks of basic
military training, 473 infantry recruits were inrolled into the study. 2D analysis was performed to measure foot pronation during treadmill walking. The soldiers were examined during the training course at two weeks intervals for stress fractures. The odds ratio was calculated for each dynamic pronation parameter in relation to the stress fractures. 10% of the 405 soldiers who finished the training were diagnosed with stress
fractures of the femur and tibia. Longer pronation time was related to risk reduction for the development of stress fractures and may have a protective effect during an extended
period of training
Effect of wire diameter on ultrasonic enhancement of subcooled pool boiling
Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.New methods for cooling of microelectronic elements have been recently developed, including application of ultrasonic fields. Ultrasonic fields enhance the heat transfer in two-phase cooling. The present work deals with ultrasonic enhancement of heat transfer from wires in sub-cooled pool boiling. The experiments have been carried out using three wires of different diameters: 0.05, 0.09, 0.2mm, submerged into a bath with water. The applied ultrasonic field was of frequency of 40 kHz and intensity of 0.5 W/cm2. The wire wall temperature was measured as a function of wire surface heat flux. When the ultrasonic field was applied, the wall temperature reduced in the range of measured heat fluxes. The temperature difference increased with the heat flux. It also increased with the wire diameter. At the smallest diameter only a small decrease of the wall temperature, about 10-15 degrees, was observed, while at larger diameters the decrease of the wall temperature was about 30 - 35 degrees.dc201
Isokinetic moment curve abnormalities are associated with articular knee lesions
The aim of this study was to test whether lesions of the medial meniscus (MM) and of the anterior cruciate ligament (ACL) are associated with specific abnormalities of isokinetic moment curves (IMCs). Fifty-four young adults (20 active healthy people, and 34 patients with unilateral knee injuries) were assessed through knee extensor and flexor isokinetic tests at 60\ub0/s. Qualitative IMC analysis was performed using a novel classification system which identified three distinct abnormal shapes. The chi-squared (\u3c72) test was used to determine the inter-individual and intra-individual differences between the groups. Quantitative IMC inter-group comparisons were performed by a one-way analysis of variance (ANOVA). Knees with MM and ACL lesions were consistently associated with IMC shape irregularities (p<0.001) and with abnormal quantitative scores (p<0.001). More specifically, knees with isolated ACL lesions and knees with combined ACL and MM lesions presented similar distribution of knee extensor and flexor IMC irregularities, which was not present in knees with isolated MM lesions. A possible association between specific knee pathologies and IMC irregularities was identified (all p<0.05). In conclusion, different knee pathologies may be associated with different qualitative IMCs, which could be used as an additional presentation tool in clinical settings
Direct Numerical Simulation of Turbulent Heat Transfer Modulation in Micro-Dispersed Channel Flow
The object of this paper is to study the influence of dispersed micrometer
size particles on turbulent heat transfer mechanisms in wall-bounded flows. The
strategic target of the current research is to set up a methodology to size and
design new-concept heat transfer fluids with properties given by those of the
base fluid modulated by the presence of dynamically-interacting,
suitably-chosen, discrete micro- and nano- particles. We run Direct Numerical
Simulation (DNS) for hydrodynamically fully-developed, thermally-developing
turbulent channel flow at shear Reynolds number Re=150 and Prandtl number Pr=3,
and we tracked two large swarms of particles, characterized by different
inertia and thermal inertia. Preliminary results on velocity and temperature
statistics for both phases show that, with respect to single-phase flow, heat
transfer fluxes at the walls increase by roughly 2% when the flow is laden with
the smaller particles, which exhibit a rather persistent stability against
non-homogeneous distribution and near-wall concentration. An opposite trend
(slight heat transfer flux decrease) is observed when the larger particles are
dispersed into the flow. These results are consistent with previous
experimental findings and are discussed in the frame of the current research
activities in the field. Future developments are also outlined.Comment: Pages: 305-32
Hybrid Approach in Microscale Transport Phenomena: Application to Biodiesel Synthesis in Micro-reactors
A hybrid engineering approach to the study of transport phenomena, based on the
synergy among computational, analytical, and experimental methodologies is
reviewed. The focus of the chapter is on fundamental analysis and proof of concept
developments in the use of nano- and micro-technologies for energy efficiency and
heat and mass transfer enhancement applications. The hybrid approach described
herein combines improved lumped-differential modeling, hybrid numericalanalytical solution methods, mixed symbolic-numerical computations, and
advanced experimental techniques for micro-scale transport phenomena. An
application dealing with micro-reactors for continuous synthesis of biodiesel is
selected to demonstrate the instrumental role of the hybrid approach in achieving
improved design and enhanced performance
Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review
<p>Abstract</p> <p>Background</p> <p>Throughout the period of one year, approximately 50% of recreational runners will sustain an injury that disrupts their training regimen. Foot orthoses have been shown to be clinically effective in the prevention and treatment of several running-related conditions, yet the physical effect of this intervention during running remains poorly understood. The aim of this literature review was therefore to evaluate the effect of foot orthoses on lower extremity forces and pressure (kinetics) during running.</p> <p>Methods</p> <p>A systematic search of electronic databases including Medline (1966-present), CINAHL, SportDiscus, and The Cochrane Library occurred on 7 May 2008. Eligible articles were selected according to pre-determined criteria. Methodological quality was evaluated by use of the Quality Index as described by Downs & Black, followed by critical analysis according to outcome variables.</p> <p>Results</p> <p>The most widely reported kinetic outcomes were loading rate and impact force, however the effect of foot orthoses on these variables remains unclear. In contrast, current evidence suggests that a reduction in the rearfoot inversion moment is the most consistent kinetic effect of foot orthoses during running.</p> <p>Conclusion</p> <p>The findings of this review demonstrate systematic effects that may inform the direction of future research, as further evidence is required to define the mechanism of action of foot orthoses during running. Continuation of research in this field will enable targeting of design parameters towards biomechanical variables that are supported by evidence, and may lead to advancements in clinical efficacy.</p
Season of Sampling and Season of Birth Influence Serotonin Metabolite Levels in Human Cerebrospinal Fluid
BACKGROUND: Animal studies have revealed seasonal patterns in cerebrospinal fluid (CSF) monoamine (MA) turnover. In humans, no study had systematically assessed seasonal patterns in CSF MA turnover in a large set of healthy adults. METHODOLOGY/PRINCIPAL FINDINGS: Standardized amounts of CSF were prospectively collected from 223 healthy individuals undergoing spinal anesthesia for minor surgical procedures. The metabolites of serotonin (5-hydroxyindoleacetic acid, 5-HIAA), dopamine (homovanillic acid, HVA) and norepinephrine (3-methoxy-4-hydroxyphenylglycol, MPHG) were measured using high performance liquid chromatography (HPLC). Concentration measurements by sampling and birth dates were modeled using a non-linear quantile cosine function and locally weighted scatterplot smoothing (LOESS, span = 0.75). The cosine model showed a unimodal season of sampling 5-HIAA zenith in April and a nadir in October (p-value of the amplitude of the cosine = 0.00050), with predicted maximum (PC(max)) and minimum (PC(min)) concentrations of 173 and 108 nmol/L, respectively, implying a 60% increase from trough to peak. Season of birth showed a unimodal 5-HIAA zenith in May and a nadir in November (p = 0.00339; PC(max) = 172 and PC(min) = 126). The non-parametric LOESS showed a similar pattern to the cosine in both season of sampling and season of birth models, validating the cosine model. A final model including both sampling and birth months demonstrated that both sampling and birth seasons were independent predictors of 5-HIAA concentrations. CONCLUSION: In subjects without mental illness, 5-HT turnover shows circannual variation by season of sampling as well as season of birth, with peaks in spring and troughs in fall
- …