396 research outputs found

    Sophisticated Inference.

    Get PDF
    Active inference offers a first principle account of sentient behavior, from which special and important cases-for example, reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design-can be derived. Active inference finesses the exploitation-exploration dilemma in relation to prior preferences by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this letter, we consider a sophisticated kind of active inference using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about "what would happen if I did that" to "what I would believe about what would happen if I did that." The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states as opposed to states per se. We illustrate the competence of this scheme using numerical simulations of deep decision problems

    Observational signatures of disk and jet misalignment in images of accreting black holes

    Get PDF
    Black hole accretion is one of nature's most efficient energy extraction processes. When gas falls in, a significant fraction of its gravitational binding energy is either converted into radiation or flows outwards in the form of black hole-driven jets and disk-driven winds. Recently, the Event Horizon Telescope (EHT), an Earth-size sub-millimetre radio interferometer, captured the first images of M87's black hole. These images were analysed and interpreted using general-relativistic magnetohydrodynamics (GRMHD) models of accretion disks with rotation axes aligned with the black hole spin axis. However, since infalling gas is often insensitive to the black hole spin direction, misalignment between accretion disk and black hole spin may be a common occurrence in nature. In this work, we use the general-relativistic radiative transfer (GRRT) code \texttt{BHOSS} to calculate the first synthetic radio images of (highly) tilted disk/jet models generated by our GPU-accelerated GRMHD code \texttt{HAMR}. While the tilt does not have a noticeable effect on the system dynamics beyond a few tens of gravitational radii from the black hole, the warping of the disk and jet can imprint observable signatures in EHT images on smaller scales. Comparing the images from our GRMHD models to the 43 GHz and 230 GHz EHT images of M87, we find that M87 may feature a tilted disk/jet system. Further, tilted disks and jets display significant time variability in the 230 GHz flux that can be further tested by longer-duration EHT observations of M87

    H-AMR: A New GPU-accelerated GRMHD Code for Exascale Computing With 3D Adaptive Mesh Refinement and Local Adaptive Time-stepping

    Get PDF
    General-relativistic magnetohydrodynamic (GRMHD) simulations have revolutionized our understanding of black-hole accretion. Here, we present a GPU-accelerated GRMHD code H-AMR with multi-faceted optimizations that, collectively, accelerate computation by 2-5 orders of magnitude for a wide range of applications. Firstly, it involves a novel implementation of a spherical-polar grid with 3D adaptive mesh refinement that operates in each of the 3 dimensions independently. This allows us to circumvent the Courant condition near the polar singularity, which otherwise cripples high-res computational performance. Secondly, we demonstrate that local adaptive time-stepping (LAT) on a logarithmic spherical-polar grid accelerates computation by a factor of ≲10\lesssim10 compared to traditional hierarchical time-stepping approaches. Jointly, these unique features lead to an effective speed of ∼109\sim10^9 zone-cycles-per-second-per-node on 5,400 NVIDIA V100 GPUs (i.e., 900 nodes of the OLCF Summit supercomputer). We demonstrate its computational performance by presenting the first GRMHD simulation of a tilted thin accretion disk threaded by a toroidal magnetic field around a rapidly spinning black hole. With an effective resolution of 1313,440×4440\times4,608×8608\times8,092092 cells, and a total of ≲22\lesssim22 billion cells and ∼0.65×108\sim0.65\times10^8 timesteps, it is among the largest astrophysical simulations ever performed. We find that frame-dragging by the black hole tears up the disk into two independently precessing sub-disks. The innermost sub-disk rotation axis intermittently aligns with the black hole spin, demonstrating for the first time that such long-sought alignment is possible in the absence of large-scale poloidal magnetic fields.Comment: 10 pages, 5 figures, submitted to MNRAS, for the YouTube playlist, see https://youtu.be/rIOjKUfzcv

    Schottky Diodes on ZnO Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

    Get PDF
    Enhancement of the properties of zinc oxide (ZnO)-based Schottky diodes has been explored using a combination of plasma-enhanced atomic layer deposition (PE-ALD) ZnO thin films and silver oxide Schottky contacts deposited by reactive radio-frequency sputtering. The electrical properties of the ZnO thin films were systematically tuned by varying the deposition temperature and oxygen plasma time during PE-ALD to optimize the performance of the diode. Low temperature (80 °C) coupled with relatively long oxygen plasma time (>30 s) PE-ALD is the key to produce ZnO films with net doping concentration lower than 10 17 cm -3 . Under the optimal deposition conditions identified, the diode shows an ideality factor of 1.33, an effective barrier height of 0.80 eV, and an ON/OFF ratio of 3.11 × 10 5

    The structural analysis of Cu(111)-Te (√3 × √3) R30° and (2√3 × 2√3)R30° surface phases by quantitative LEED and DFT,

    Get PDF
    The chemisorption of tellurium on atomically clean Cu(111) surface has been studied under ultra-high vacuum conditions. At room temperature, the initial stage of growth was an ordered 23×23R30° phase (0.08 ML). An ordered 3×3R30° phase is formed at 0.33 ML coverage of Te. The adsorption sites of the Te atoms on the Cu(111) surface at 0.08 ML and 0.33 ML coverages are explored by quantitative low energy electron diffraction (LEED) and density functional theory (DFT). Our results indicate that substitutional surface alloy formation starts at very low coverages
    • …
    corecore