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Active inference offers a first principle account of sentient behavior, from
which special and important cases—for example, reinforcement learning,
active learning, Bayes optimal inference, Bayes optimal design—can be
derived. Active inference finesses the exploitation-exploration dilemma
in relation to prior preferences by placing information gain on the same
footing as reward or value. In brief, active inference replaces value func-
tions with functionals of (Bayesian) beliefs, in the form of an expected
(variational) free energy. In this letter, we consider a sophisticated kind
of active inference using a recursive form of expected free energy. So-
phistication describes the degree to which an agent has beliefs about
beliefs. We consider agents with beliefs about the counterfactual conse-
quences of action for states of affairs and beliefs about those latent states.
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714 K. Friston et al.

In other words, we move from simply considering beliefs about “what
would happen if I did that” to “what I would believe about what would
happen if I did that.” The recursive form of the free energy functional
effectively implements a deep tree search over actions and outcomes in
the future. Crucially, this search is over sequences of belief states as op-
posed to states per se. We illustrate the competence of this scheme using
numerical simulations of deep decision problems.

1 Introduction

In theoretical neurobiology, active inference has proved useful in provid-
ing a generic account of motivated behavior under ideal Bayesian assump-
tions, incorporating both epistemic and pragmatic value (Da Costa, Parr,
Sajid et al., 2020; Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo,
2017). This account is often portrayed as being based on first principles be-
cause it inherits from the statistical physics of random dynamical systems
at nonequilibrium steady state (Friston, 2013; Hesp, Ramstead et al., 2019;
Parr, Da Costa, & Friston, 2020). Active inference does not pretend to re-
place existing formulations of sentient behavior; it just provides a Bayesian
mechanics from which most (and, arguably, all) normative optimization
schemes can be derived as special cases. Generally these special cases arise
when ignoring one sort of uncertainty or another. For example, if we ignore
uncertainty about (unobservable) hidden states that generate (observable)
outcomes, active inference reduces to conventional schemes like optimal
control theory and reinforcement learning. While the latter schemes tend
to focus on the maximization of value as a function of hidden states per se,
active inference optimizes a functional1 of (Bayesian) beliefs about hidden
states. This allows it to account for uncertainties surrounding action and
perception in a unified, Bayes-optimal fashion.

Most current applications of active inference rest on the selection of poli-
cies (i.e., ordered sequences of actions or open-loop policies, where the se-
quence of future actions depends only on current states, not future states)
that minimize a functional of beliefs called expected free energy (Da Costa,
Parr, Sajid, et al., 2020; Friston, FitzGerald et al., 2017). This approach clearly
has limitations, in the sense that one has to specify a priori allowable poli-
cies, each of which represents a possible path through a deep tree of action
sequences. This formulation limits the scalability of the ensuing schemes be-
cause only a relatively small number of policies can be evaluated (Tschantz,
Baltieri, Seth, & Buckley, 2019). In this letter, we consider active inference
schemes that enable a deep tree search over all allowable sequences of

1
Technically, a functional is defined as a function whose arguments (in this case, beliefs

about hidden states) are themselves functions of other arguments (in this case, observed
outcomes generated by hidden states).
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Sophisticated Inference 715

action into the future. Because this involves a recursive evaluation of ex-
pected free energy—and implicit Bayesian beliefs—the resulting scheme
has a sophisticated aspect (Costa-Gomes, Crawford, & Broseta, 2001; De-
vaine, Hollard, & Daunizeau, 2014): rolling out beliefs about beliefs.

Sophistication is a term from the economics literature and refers to having
beliefs about one’s own or another’s beliefs. For instance, in game theory,
an agent is said to have a level of sophistication of 1 if she has beliefs about
her opponent, 2 if she has beliefs about her opponent’s beliefs about her
strategy, and so forth. Most people have a level of sophistication greater
than two (Camerer, Ho, & Chong, 2004).

According to this view, most current illustrations of active inference can
be regarded as unsophisticated or naive, in the sense that they consider only
beliefs about the consequences of action, as opposed to the consequences of
action for beliefs. In what follows, we try to unpack this distinction intu-
itively and formally using mathematical and numerical analyses. We also
take the opportunity to survey the repertoire of existing schemes that fall
under the Bayesian mechanics of active inference, including expected util-
ity theory (Von Neumann & Morgenstern, 1944), Bayesian decision theory
(Berger, 2011), optimal Bayesian design (Lindley, 1956), reinforcement learn-
ing (Sutton & Barto, 1981), active learning (MacKay, 1992), risk-sensitive
control (van den Broek, Wiegerinck, & Kappen, 2010), artificial curiosity
(Schmidhuber, 2006), intrinsic motivation (Oudeyer & Kaplan, 2007), em-
powerment (Klyubin, Polani, & Nehaniv, 2005), and the information bottle-
neck method (Tishby, Pereira, & Bialek, 1999; Tishby & Polani, 2010).

Sophisticated inference recovers Bayes-adaptive reinforcement learning
(Åström, 1965; Ghavamzadeh, Mannor, Pineau, & Tamar, 2016; Ross, Chaib-
draa, & Pineau, 2008) in the zero temperature limit. Both approaches per-
form belief state planning, where the agent maximizes an objective function
by taking into account how it expects its own beliefs to change in the fu-
ture (Duff, 2002) and evinces a degree of sophistication. The key distinction
is that Bayes-adaptive reinforcement learning considers arbitrary reward
functions, while sophisticated active inference optimizes an expected free
energy that can be motivated from first principles. While both can be speci-
fied for particular tasks, the expected free energy additionally mandates the
agent to seek out information about the world (Friston, 2013, 2019) beyond
what is necessary for solving a particular task (Tishby & Polani, 2010). This
allows inference to account for artificial curiosity (Lindley, 1956; Oudeyer
& Kaplan, 2007; Schmidhuber, 1991) that goes beyond reward seeking
to the gathering of evidence for an agent’s existence (i.e., its marginal
likelihood). This is sometimes referred to as self-evidencing (Hohwy,
2016).

The basic distinction between sophisticated and unsophisticated infer-
ence was briefly introduced in appendix 6 of Friston, FitzGerald et al. (2017).
As outlined in this appendix, there is a sense in which unsophisticated for-
mulations, which simply sum the expected free energy over future time
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716 K. Friston et al.

steps based on current beliefs about the future, can be thought of as se-
lecting policies that optimize a path integral of the expected free energy. In
contrast, sophisticated schemes take account of the way in which the free
energy changes as alternative paths are pursued and beliefs updated. This
can be thought of as an expected path integral.

This distinction is subtle but can lead to fundamentally different kinds
of behavior. A simple example illustrates the difference. Consider the fol-
lowing three-armed bandit problem—with a twist. The right and left arms
increase or decrease your winnings. However, you do not know which arm
is which. The central arm does not affect your winnings but tells you which
arm pays off. Crucially, once you have committed to either the right or the
left arm, you cannot switch to the other arm. This game is engineered to
confound agents whose choice behavior is based on Bayesian decision the-
ory. This follows because the expected payoff is the same for every sequence
of moves. In other words, choosing the right or left arm—for the first and
subsequent trials—means you are equally likely to win or lose. Similarly,
choosing the middle arm (or indeed doing nothing) has the same Bayesian
risk or expected utility.

However, an active inference agent, who is trying to minimize her ex-
pected free energy,2 will select actions that minimize the risk of losing and
resolve her uncertainty about whether the right or left arm pays off. This
means that the center arm acquires epistemic (uncertainty-resolving) affor-
dance and becomes intrinsically attractive. On choosing the central arm—
and discovering which arm holds the reward—her subsequent choices are
informed, in the sense that she can exploit her knowledge and commit
to the rewarding arm. In this example, the agent has resolved a simple
exploration-exploitation dilemma3 by resolving ambiguity as a prelude to
exploiting updated beliefs about the consequences of subsequent action.
Note that because the central arm has been selected, there is no ambiguity
in play, and its epistemic affordance disappears. Note further that all three
arms initially have some epistemic affordance; however, the right and left
arms are less informative if the payoff is probabilistic.

2
Expected free energy can be read as risk plus ambiguity: risk is taken here to be the

relative entropy (i.e., KL divergence) between predicted and preferred outcomes, while
ambiguity is the conditional entropy (i.e., conditional uncertainty) about outcomes given
their causes.

3
Exploration here has been associated with the resolution of ambiguity or uncertainty

about hidden states, namely, the context in which the agent is operating (i.e., left or right
arm payoff). More conventional formulations of exploration could remove the prior belief
that the right and left arms have a complementary payoff structure, such that the agent
has to learn the probabilities of winning and losing when selecting either arm. However,
exactly the same principles apply: the right and left arms now acquire an epistemic af-
fordance in virtue of resolving uncertainty about the contingencies that underlie payoffs
as opposed to hidden states. We will see how this falls out of expected free energy mini-
mization later.
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Sophisticated Inference 717

The key move behind this letter is to consider a sophisticated agent who
evaluates the expected free energy of each move recursively. Simply choos-
ing the central arm to resolve uncertainty does not, in and of itself, mean
an epistemic action was chosen in the service of securing future rewards.
In other words, the central arm is selected because all the options had the
same Bayesian risk4 while the central arm had the greatest epistemic affor-
dance.5 Now consider a sophisticated agent who imagines what she will do
after acting. For each plausible outcome, she can work out how her beliefs
about hidden states will be updated and evaluate the expected free energy
of the subsequent move under each action and subsequent outcome. By
taking the average over both, she can evaluate the expected free energy of
the second move that is afforded by the first. If she repeats this process re-
cursively, she can effectively perform a deep tree search over all ordered
sequences of actions and their consequences.

Heuristically, the unsophisticated agent simply chooses the central arm
because she knows it will resolve uncertainty about states of affairs. Con-
versely, the sophisticated agent follows through—on this resolution of
ambiguity—in terms of its implications for subsequent choices. In this in-
stance, she knows that only two things can happen if she chooses the central
arm: either the right or left arm will be disclosed as the payoff arm. In ei-
ther case, the subsequent choice can be made unambiguously to minimize
risk and secure her reward. The average expected free energy of these sub-
sequent actions will be pleasingly low, making a choice of the central arm
more attractive than its expected free energy would otherwise suggest. This
means the sophisticated agent is more confident about her choices because
she has gone beyond forming beliefs about the consequences of action to
consider the effects of action on subsequent beliefs and the (epistemic) ac-
tions that ensue. The remainder of this letter unpacks this recursive kind of
planning, using formal analysis and simulations.

This letter is intended to introduce a sophisticated scheme for active in-
ference and provide some intuition as to how it works in practice. We val-
idate this scheme through reproducing simulation results from previous
formulations of active inference in a simple and a more complex navigation
task. This is not intended as proof of superiority of sophisticated inference
over existing schemes, which we assess in a companion paper (Da Costa,
Sajid et al. 2020), but to demonstrate noninferiority in some illustrative set-
tings. Note that it is possible to show that on reward maximization tasks,
sophisticated active inference will significantly outperform, as it accommo-
dates the backward induction algorithm as a special case.

4
Bayesian risk is taken to be negative expected utility, that is, expected loss under some

predictive posterior beliefs (about hidden states).
5
Epistemic affordance is taken to be the information gain or relative entropy of pre-

dictive beliefs (about hidden states) before and after an action.
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718 K. Friston et al.

This paper has four sections. Section 2 provides a brief overview of active
inference in terms of free energy minimization and the various schemes that
can be used for implementation. This section starts with the basic impera-
tive to optimize Bayesian beliefs about latent or hidden states of the world in
terms of approximate Bayesian (i.e., variational) inference (Dayan, Hinton,
Neal, & Zemel, 1995). It then goes on to cast planning as inference (Attias,
2003; Botvinick & Toussaint, 2012) as the minimization of an expected free
energy under allowable sequences of actions or policies (Friston, FitzGerald
et al., 2017). The foundations of expected free energy are detailed in an ap-
pendix from two complementary perspectives, the second of which is prob-
ably more fundamental as it rests on the first-principle account mentioned
above (Friston, 2013, 2019; Parr et al., 2020). The third section considers so-
phisticated schemes using a recursive formulation of expected free energy.
Effectively, this enables the efficient search of deep policy trees (that entail
all possible outcomes under each policy or path). This search is efficient
because only paths that have a sufficiently high predictive posterior prob-
ability need to be evaluated. This restricted tree search is straightforward
to implement in the present setting because we are propagating beliefs (i.e.,
probabilities) as opposed to value functions. The fourth section provides
some illustrative simulations that compare sophisticated and unsophisti-
cated agents in the three-armed bandit (or T-maze paradigm) described
above. It also considers deeper problems, using navigation and novelty
seeking as an example. We conclude with a brief summary of what sophis-
ticated inference brings to the table.

2 Active Inference and Free Energy Minimization

Most of the active inference literature concerns itself with partially observ-
able Markov decision processes. In other words, it considers generative
models of discrete hidden states and observable outcomes, with uncertainty
about the (likelihood) mapping between hidden states and outcomes and
(prior) probability transitions among hidden states. Crucially, sequential
policy selection is cast as an inference problem by treating sequences of ac-
tions (i.e., policies) as random variables. Planning then simply entails opti-
mizing posterior beliefs about the policies being pursued and selecting an
action from the most likely policy.

On this view, there are just two sets of unknown variables: hidden states
and policies. Belief distributions over this bipartition can then be optimized
with respect to an evidence bound in the usual way, using an appropriate
mean-field approximation (Beal, 2003; Winn & Bishop, 2005). In this setup,
we can associate perception with the optimization of posterior beliefs about
hidden states, while action follows from planning based on posterior beliefs
about policies. Implicit in this formulation is a generative model: a proba-
bilistic specification of the joint probability distribution over policies, hid-
den states, and outcomes. This generative model is usually factorized into
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Sophisticated Inference 719

the likelihood of outcomes, given hidden states, the conditional distribu-
tion over hidden states, given policies, and priors over policies. In active
inference, the priors over policies are determined by their expected free en-
ergy, noting that this energy, which depends on future courses of action,
furnishes an empirical prior over subsequent actions.

In brief, given some prior beliefs about the initial and final states of some
epoch of active inference, the game is to find a posterior belief distribution
over policies that brings the initial distribution as close as possible to the
final distribution, given observations. This objective can be achieved by op-
timizing posterior beliefs about hidden states and policies with respect to a
variational bound on (the logarithm of) the marginal likelihood of the gen-
erative model (i.e., log evidence). This evidence bound is known as a varia-
tional free energy or (negative) evidence lower bound. In what follows, we
offer an overview of the formal aspects of this enactive kind of inference.

2.1 Discrete State-Space Models. Our objective is to optimize beliefs
(i.e., an approximate posterior) over policies π and their consequences,
namely, hidden states s ≡ s≤τ from some initial state s1, until some policy
horizon τ , given some observations o≤t up until the current time t. This op-
timization can be cast as minimizing a (generalized) free energy functional
F[Q(s, π )] of the approximate posterior (Parr & Friston, 2019b). This gen-
eralized free energy has two parts: a generative model for state transitions,
given policies, and a generative model for policies that depend on the final
states (omitting constants for clarity):

F[Q(s, π )] = EQ(π )[F(π )] + DKL[Q(π )||P(π )]

= EQ(π )[ln Q(π ) + E(π ) + F(π ) + G(π )]

F(π ) = EQ(s<τ |π )[ln Q(s≤τ |π ) − ln P(o≤t, s≤τ |π )]

G(π ) = EQ(oτ ,sτ |π )[ln Q(sτ |π ) − ln P(oτ , sτ )]

Q
(
oτ , sτ |π

) = P(oτ |sτ )Q(sτ |π )

− ln P(π ) = E(π ) + G(π ) (2.1)

This generalized free energy includes the variational free energy6 of each
policy F(π ) that depends on priors over state transitions and an expected
free energy of each policy G(π ) that underwrites priors over policies. The
priors over policies ln P(π ) = −E(π ) − G(π ) ensure the expected free en-
ergy at time τ (i.e., the policy horizon) is minimized. Here, E(π ) represents
an empirical prior that is usually conditioned on hidden states at a higher
level in deep (i.e., hierarchical) generative models. Note that outcomes on

6
Note that both F[Q(s, π )] and F(π ) depend on present and past observations. How-

ever, this dependence is typically left implicit, a convention we adhere to in this letter.
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720 K. Friston et al.

the horizon are random variables with a likelihood distribution, whereas
outcomes in the past are realized variables. The distributions indicated by
Q are variational distributions that have various interpretations through-
out this letter. They inherit these interpretations in virtue of when we are in
time. This means they are posterior probabilities when we account for data
that have already been observed but can play the role of (empirical) priors
when thinking about observations that have yet to be observed.

The first equality shows that the variational free energy, expected under
the posterior over policies, plays the role of an accuracy, while the complex-
ity of posterior beliefs about policies is the divergence from prior beliefs.7

In other words, variational free energy scores the evidence for a particular
policy that accrues from observed outcomes. The priors over policies also
have the form of a free energy. For interested readers, the appendix provides
a fairly comprehensive motivation of this functional form, from comple-
mentary perspectives. In addition, Table 1 provides a glossary of variables
used in this letter. We now consider the role of free energy in exact, approxi-
mate, and amortized inference, before turning to active inference and policy
selection.

2.2 Perception as Inference. Optimizing the posterior over hidden
states renders the variational free energy equivalent to (negative) log
evidence—or marginal likelihood—in the usual way while optimizing the
posterior over policies renders the generalized free energy zero:

Q(s|π ) = arg min
Q

F(π ) = P(s|o≤t, π )

⇒ F(π ) = − ln P(o≤t |π )

Q(π ) = arg min
Q

F[Q(s, π )]

= σ [−E(π ) − F(π ) − G(π )]

⇒ F[Q(s, π )] = 0 (2.2)

The first equalities correspond to exact Bayesian inference based on a soft-
max function (i.e., normalized exponential, σ [·]) of the log probability over
outcomes and hidden states, under a particular policy. To finesse the nu-
merics of optimizing the posterior over all hidden states, a mean-field ap-
proximation usually leverages the Markovian form of the generative model
to optimize an approximate posterior over hidden states at each time point

7
Generally log evidence is accuracy minus complexity, where accuracy is the ex-

pected log likelihood and complexity is the KL divergence between posterior and prior
beliefs.
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Sophisticated Inference 721

Table 1: Glossary of Variables.

Notation Variable

P(·) Probability distribution
Q(·) Variational posterior or empirical prior distribution
F Variational free energy
G Expected free energy
uτ Action at time τ

o = (o1, o2, . . . , oτ , . . .) Observation
s = (s1, s2, . . . , sτ , . . .) Hidden (latent) states
π Policy (sequence of actions)
sπ
τ Expectation of state at time τ under Q(sτ |π )

su
τ Expectation of state at time τ under Q(sτ |uτ )

vπ
τ Log expectation of state at time τ under Q(sτ |π )

ou
τ Expectation of observation at time τ under Q(oτ |u<τ )

uo
τ Expectation of action at time τ under Q(uτ |oτ )

A Parameters of categorical likelihood distribution
B Parameters of categorical transition probabilities
C Parameters of categorical prior preferences
D Parameters of categorical initial state probabilities
H Conditional entropy of likelihood distribution
a, a Prior and posterior Dirichlet parameters for A
b, b Prior and posterior Dirichlet parameters for B
d, d Prior and posterior Dirichlet parameters for D
Cat(·) Categorical probability distribution
Dir(·) Dirichlet probability distribution
EP[·] Expectation under the subscripted probability distribution
H[·] Shannon entropy of a probability distribution
DKL[·‖·] Kullback-Leibler divergence between probability distributions
ψ (·) Digamma function
σ (·) Softmax (normalized exponential) function

(where s\τ denotes the Markov blanket of sτ ):

Q(sτ |π ) = σ [EQ(s\τ |π )[ln P(o≤t, s≤τ |π )]]

= σ [EQ(s\τ |π )[ln P(oτ |sτ ) + ln P(sτ |sτ−1, π ) + ln P(sτ+1|sτ , π )]]

Q(s|π ) = Q(s1|π )Q(s2|π ) . . . Q(sτ |π )

P(s|π ) = P(s1|π )P(s2|s1, π ) . . . P(sτ |sτ−1, π ) (2.3)

This corresponds to a form of approximate Bayesian inference (i.e., varia-
tional Bayes) in which equation 2.3 is iterated over the factors of the mean-
field approximation to perform a coordinate descent or fixed-point iteration
(Beal, 2003). An alternative formulation rests on an explicit minimization
of variational free energy using iterated gradient flows to each fixed point
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722 K. Friston et al.

(expressed in terms of sufficient statistics):

v̇π
τ = −∂sπ

τ
F(π ) = EQ(s\τ |π )[ln P(o≤t, s≤τ |π )] − ln Q(sτ |π )

sπ
τ = σ (vπ

τ )

Q(sτ |π ) = Cat(sπ
τ ) (2.4)

This solution can be read as (neuronal) dynamics that implement varia-
tional message passing8 (Beal, 2003; Friston, Parr, & de Vries, 2017; Parr,
Markovic, Kiebel, & Friston, 2019). In this form, the free energy gradients
constitute a prediction error: the difference between the posterior surprisal9

and its predicted value.
Finally, one can consider amortizing inference using standard proce-

dures from machine learning to optimize the parameters φ of a recogni-
tion model with regard to variational free energy. In the present setting,
this approach can be summarized as using universal function approxima-
tors (e.g., deep neural networks) to parameterize equation 2.2, namely, the
mapping between observations and the sufficient statistics of the approxi-
mate posterior—for example,

sπ
τ = fφ (o≤t, sπ

≤τ , π )

φ = arg min
φ

F[Q(s, π )]

Q(sτ |π ) = Cat( fφ ) (2.5)

Effectively, amortized inference is “learning to infer” (Çatal, Nauta, Verbe-
len, Simoens, & Dhoedt, 2019; Lee & Keramati, 2017; Millidge, 2019; Tou-
ssaint & Storkey, 2006; Tschantz et al., 2019; Ueltzhöffer, 2018). Variational
autoencoders can be regarded as an instance of amortized inference, if we
ignore conditioning on policies (Suh, Chae, Kang, & Choi, 2016). Clearly,
amortization precludes online inference and may appear biologically im-
plausible. However, it might be the case that certain brain structures learn
to infer; for example, the cerebellum might learn from inferential processes
implemented by the cerebral cortex (Doya, 1999; Ramnani, 2014).

2.3 Planning as Inference. The posterior over policies is somewhat sim-
pler to evaluate—as a softmax function of their empirical,10 variational, and

8
Where v can be thought of as transmembrane voltage or depolarization and s corre-

sponds to the average firing rate of a neuronal population. (Da Costa, Parr, Sengupta, &
Friston, 2020).

9
Surprisal is the self-information or negative log probability of outcomes. (Tribus,

1961).
10

The empirical free energy is usually based on inferences at a higher level in a hierar-
chical generative model. For details on hierarchical generative models, see Friston, Rosch,
Parr, Price, and Bowman (2017).
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Sophisticated Inference 723

expected free energy. This can be expressed in terms of a generalized free
energy that includes the parameters of the generative model (e.g., the like-
lihood parameters, A):

Q(π ) = arg min
Q

F[Q(s, π, A)] = σ [−E(π ) − F(π ) − G(π )]

G(π ) = EQ(oτ ,sτ |π )Q(A)[ln Q(sτ |π )Q(A) − ln P(oτ , sτ , A)] (2.6)

The expected free energy of a policy can be unpacked in a number of ways.
Perhaps the most intuitive is in terms of risk and ambiguity:11

G(π ) = DKL[Q(sτ , A|π )||P(sτ , A)]︸ ︷︷ ︸
Risk

+EQ(oτ ,sτ |π )[− ln P(oτ |sτ , A)]︸ ︷︷ ︸
Ambiguity

(2.7)

The equivalence between the expected free energy as shown in equations
2.6 and 2.7 rests on a mean-field assumption that equates the variational
posterior for states and parameters with the product of their marginal pos-
teriors. This means that policy selection minimizes risk and ambiguity. Risk,
in this setting, is simply the difference between predicted and prior beliefs
about final states. In other words, policies will be deemed more likely if
they bring about states that conform to prior preferences. In the optimal
control literature, this part of expected free energy underwrites KL con-
trol (Todorov, 2008; van den Broek et al., 2010). In economics, it leads to
risk-sensitive policies (Fleming & Sheu, 2002). Ambiguity reflects the uncer-
tainty about future outcomes, given hidden states. Minimizing ambiguity
therefore corresponds to choosing future states that generate unambiguous
and informative outcomes (e.g., switching on a light in the dark).

Sometimes it is useful to express risk in terms of outcomes as opposed to
hidden states—for example, when the generative model is unknown or one
can only quantify preferences about outcomes (as opposed to the inferred
causes of those outcomes). In these cases, the risk over hidden states can be
replaced by the risk over outcomes by assuming the divergence between
the predicted and true posterior is small (omitting parameters for clarity):

DKL[Q(sτ |π )||P(sτ )]︸ ︷︷ ︸
Risk (states)

= DKL[Q(oτ |π )||P(oτ )]︸ ︷︷ ︸
Risk (outcomes)

+ EQ(oτ |π )[DKL[Q(sτ |oτ , π )||P(sτ |oτ )]]︸ ︷︷ ︸
Expected evidence bound

(2.8)

11
The appendix provides derivations of equation 2.7 based on the principles of optimal

Bayesian design and an integral fluctuation theorem described in Friston (2019).
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724 K. Friston et al.

This divergence constitutes an expected evidence bound that also appears
if we unpack expected free energy in terms of intrinsic and extrinsic value:12

G(π ) = −EQ(oτ |π )[ln P(oτ )]︸ ︷︷ ︸
Extrinsic value

+EQ(oτ |π )[DKL[Q(sτ , A|oτ , π )||P(sτ , A|oτ )]]︸ ︷︷ ︸
Expected evidence bound

− EQ(oτ |π )[DKL[Q(sτ |oτ , π )||Q(sτ |π )]]︸ ︷︷ ︸
Intrinsic value (states) or salience

− EQ(oτ ,sτ |π )[DKL[Q(A|oτ , sτ , π )||Q(A)]]︸ ︷︷ ︸
Intrinsic value (parameters) or novelty

≥ −EQ(oτ |π )[ln P(oτ )]︸ ︷︷ ︸
Expected log evidence

−EQ(oτ |π )[DKL[Q(sτ , A|oτ , π )||Q(sτ , A|π )]]︸ ︷︷ ︸
Expected information gain

(2.9)

The inequality in the final line of equation 2.9 is obtained by omitting the
expected evidence bound that appears on the previous lines. As a KL-
divergence, this is never negative and so ensures the final line is never
greater than the expected free energy. In addition, the intrinsic value terms
have been combined into the intrinsic value of both parameters and states.
Extrinsic value is just the expected value of log prior preferences (i.e., log ev-
idence), which can be associated with reward and utility in behavioral psy-
chology and economics, respectively (Barto, Mirolli, & Baldassarre, 2013;
Kauder, 1953; Schmidhuber, 2010). In this setting, extrinsic value is the com-
plement of Bayesian risk (Berger, 2011). The intrinsic value of a policy is its
epistemic value or affordance (Friston et al., 2015). This is just the expected
information gain afforded by a particular policy, which can be about hidden
states (i.e., salience) or model parameters (i.e., novelty). It is this term that
underwrites artificial curiosity (Schmidhuber, 2006). The final inequality
above shows that extrinsic value is the expected log evidence under beliefs
about final outcomes, while the intrinsic value ensures that this expectation
is maximally informed when outcomes are encountered. Collectively, these
two terms underwrite the resolution of uncertainty about hidden states (i.e.,
information gain) and outcomes (i.e., expected surprisal) in relation to prior
beliefs.

Intrinsic value is also known as intrinsic motivation in neurorobotics
(Barto et al., 2013; Oudeyer & Kaplan, 2007; Ryan & Deci, 1985), the value
of information in economics (Howard, 1966), salience in the visual neuro-
sciences, and (rather confusingly) Bayesian surprise in the visual search

12
Because the expected evidence bound cannot be less than zero, the expected free

energy of a policy is always greater than the (negative) expected intrinsic value (i.e., log
evidence) plus the intrinsic value (i.e., information gain).
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literature (Itti & Baldi, 2009; Schwartenbeck, Fitzgerald, Dolan, & Friston,
2013; Sun, Gomez, & Schmidhuber, 2011). In terms of information theory,
intrinsic value is mathematically equivalent to the expected mutual infor-
mation between hidden states in the future and their consequences, consis-
tent with the principles of minimum redundancy or maximum efficiency
(Barlow, 1961, 1974; Linsker, 1990). Finally, from a statistical perspective,
maximizing intrinsic value (i.e., salience and novelty) corresponds to opti-
mal Bayesian design (Lindley, 1956) and machine learning derivatives, such
as active learning (MacKay, 1992). On this view, active learning is driven
by novelty—namely, the information gain afforded to beliefs about model
parameters, given future states and their outcomes. Heuristically, this cu-
riosity resolves uncertainty about “what would happen if I did that?”
(Schmidhuber, 2010). Figure 1 illustrates the compass of expected free en-
ergy, in terms of its special cases, ranging from optimal Bayesian design
through to Bayesian decision theory.

3 Sophisticated Inference

So far, we have considered generative models of policies—namely, a fixed
number of ordered action sequences. These generative models can be re-
garded as placing priors over actions that stipulate a small number of allow-
able action sequences. In what follows, we consider more general models,
in which the random variables are actions at each point in time, such that
policies become a prior over transitions among action or control states. If
we relax this prior, such that successive actions are conditionally indepen-
dent, we can simplify belief updating, and implicit planning, at the expense
of having to consider a potentially enormous number of policies.

The simplification afforded by assuming actions are conditionally inde-
pendent follows because both actions and states become Markovian. This
means we can use belief propagation (Winn & Bishop, 2005; Yedidia, Free-
man, & Weiss, 2005) to update posterior beliefs about hidden states and
actions, given each new observation. In other words, we no longer need
to evaluate the posterior over hidden states in the past to evaluate a pos-
terior over policies. Technically, this is because policies introduced a semi-
Markovian aspect to belief updating by inducing conditional dependencies
between past and future hidden states. The upshot of this is that one can use
posterior beliefs from the previous time step as empirical priors for hidden
states and actions at the subsequent time step. This is formally equivalent to
the forward pass in the forward-backward algorithm (Ghahramani & Jor-
dan, 1997), where the empirical prior over hidden states depends on the
preceding (i.e., realized) action. Put simply, we are implementing a Bayesian
filtering scheme in which observations are generated by action at each time
step. Crucially, the next action is sampled from an empirical prior based on
(a free energy functional of) posterior beliefs about the current hidden state.
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726 K. Friston et al.

Figure 1: Active inference. This figure illustrates the various ways in which
minimizing expected free energy can be unpacked. The upper panel casts ac-
tion and perception as the minimization of variational and expected free energy,
respectively. Crucially, active inference introduces beliefs over policies that en-
able a formal description of planning as inference (Attias, 2003; Botvinick &
Toussaint, 2012; Kaplan & Friston, 2018). In brief, posterior beliefs about hid-
den states of the world, under plausible policies, are optimized by minimizing
a variational (free energy) bound on log evidence. These beliefs are then used to
evaluate the expected free energy of allowable policies, from which actions can
be selected (Friston, FitzGerald et al., 2017). Crucially, expected free energy sub-
sumes several special cases that predominate in psychology, machine learning,
and economics. These special cases are disclosed when one removes particu-
lar sources of uncertainty from the implicit optimization problem. For example,
if we ignore prior preferences, then the expected free energy reduces to infor-
mation gain (Lindley, 1956; MacKay, 2003) or intrinsic motivation (Barto et al.,
2013; Oudeyer & Kaplan, 2007; Ryan & Deci, 1985). This is mathematically the
same as expected Bayesian surprise and mutual information that underwrites
salience in visual search (Itti & Baldi, 2009; Sun et al., 2011) and the organiza-
tion of our visual apparatus (Barlow, 1961, 1974; Linsker, 1990; Optican & Rich-
mond, 1987). If we now remove risk but reinstate prior preferences, one can
effectively treat hidden and observed (sensory) states as isomorphic. This leads
to risk sensitive policies in economics (Fleming & Sheu, 2002; Kahneman &
Tversky, 1979) or KL control in engineering (van den Broek et al., 2010). Here,
minimizing risk corresponds to aligning predicted outcomes to preferred out-
comes. If we then remove intrinsic value, we are left with extrinsic value or
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Sophisticated Inference 727

Note that we do not need to evaluate a posterior over action, because
action is realized before the next observation is generated. In other words,
we can sample realized actions from an empirical prior over actions that
inherits from the posterior over all previous states. This leads to a simple
belief-propagation scheme for planning as inference that can be expressed
as follows:

Q(sτ |u<τ ) = P(sτ |o<τ , u<τ ) = EQ(sτ−1 )[P(sτ |sτ−1, uτ−1)]

Q(sτ ) = P(sτ |o≤τ , u<τ ) ∝ P(oτ |sτ )Q(sτ |u<τ )

Q(uτ ) = σ [−G(uτ )]

G(uτ ) = EP(oτ+1|sτ+1 )Q(sτ+1|u<τ+1 )[

ln Q(sτ+1|u<τ+1) − ln P(sτ+1)︸ ︷︷ ︸
Risk

− ln P(oτ+1|sτ+1)︸ ︷︷ ︸
Ambiguity︸ ︷︷ ︸

Expected free energy of next action

] (3.1)

Here, Q(sτ |u<τ ) denotes an empirical prior—from the point of view of state
estimation—or a predictive posterior—from the point of view of action
selection—over hidden states, given realized actions u<τ . Similarly, Q(sτ )
denotes the corresponding posterior, given subsequent outcomes. The first
line follows immediately from the operation of marginalization, the sec-
ond is an application of Bayes’s theorem, and the third is from equation
2.6. This scheme is exact because we have made no mean-field approxima-
tions of the sort required by variational message passing (Dauwels, 2007;
Friston, Parr, et al., 2017; Parr et al., 2019; Winn & Bishop, 2005). Note that
Q(s1|u<1) = P(s1), with all subsequent Q distributions derived recursively

expected utility in economics (Von Neumann & Morgenstern, 1944) that un-
derwrites reinforcement learning and behavioral psychology (Sutton & Barto,
1998). Bayesian formulations of maximizing expected utility under uncertainty
are also known as Bayesian decision theory (Berger, 2011). Finally, if we just
consider a completely unambiguous world with uninformative priors, expected
free energy reduces to the negative entropy of posterior beliefs about the causes
of data, in accord with the maximum entropy principle (Jaynes, 1957). The
expressions for variational and expected free energy correspond to those de-
scribed in the main text (omitting model parameters for clarity). They are ar-
ranged to illustrate the relationship between complexity and accuracy, which
become risk and ambiguity, when considering the consequences of action.
This means that risk-sensitive policy selection minimizes expected complex-
ity or computational cost (Sengupta & Friston, 2018). The faces shown are,
from left to right, H. Barlow, W. H. Fleming, D. Kahneman, A. Tversky, and
E. T. Jaynes.
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728 K. Friston et al.

from this, meaning no variational approximation is required. However, it is
worth noting a subtle difference between the Q distributions used here, and
those encountered in equation 2.1). The difference is that equation 3.1 only
takes account of those outcomes acquired at or before the time associated
with the state. In equation 2.1), the posteriors depend on all the outcomes
collected, that is, smoothing as opposed to the filtering in equation 3.1. The
difference between these largely dissolves when dealing with beliefs about
future states (when all relevant outcomes are earlier). Furthermore, there
are no conditional dependencies on policies, which have been replaced by
realized actions. However, equation 3.1 only considers the next action. The
question now arises: How many future actions should we consider?

At this point, the cost of the Markovian assumption arises: if we choose
a policy horizon that is too far into the future, the number of policies could
be enormous. In other words, we could effectively induce a deep tree search
over all possible sequences of future actions that would be computationally
prohibitive. However, we can now turn to sophisticated schemes to finesse
the combinatorics. This rests on the straightforward observation that if we
propagate beliefs and uncertainty into the future, we only need to evaluate
policies or paths that have a nontrivial likelihood of being pursued. This
selective search over plausible paths is constrained at two levels. First, by
propagating probability distributions, we can restrict the search over fu-
ture outcomes—for any given action at any point in the future—that have a
nontrivial posterior probability (e.g., greater than 1/16). Similarly, we only
need to evaluate those policies that are likely to be pursued—namely, those
with an expected free energy that renders their prior probability nontrivial
(e.g., greater than 1/16).

This deep search involves evaluating all actions under all plausible out-
comes so that one can perform counterfactual belief updating at each point
in time (given all plausible outcomes). However, it is not necessary to evalu-
ate outcomes per se; it is sufficient to evaluate distributions over outcomes,
conditioned on plausible hidden states. This is a subtle but important aspect
of finessing the combinatorics of belief propagation into the future and rests
on having a generative model (that generates outcomes).

Heuristically, one can imagine searching a tree with diverging branches
at successive times in the future but terminating the search down any given
branch when the prior probability of an action (and the predictive posterior
probability of its subsequent outcome) reaches a suitably small threshold
(Keramati, Smittenaar, Dolan, & Dayan, 2016; Solway & Botvinick, 2015). To
form a marginal empirical prior over the next action, one simply accumu-
lates the average expected free energy from all the children of a given node
in the tree recursively. A softmax function of this accumulated average then
constitutes the empirical prior over the next action. Algorithmically, this
can be expressed as follows, based on appendix 6 (Friston, FitzGerald et al.
2017), where uτ denotes action at τ ≥ t (omitting novelty terms associated
with model parameters for clarity):
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Sophisticated Inference 729

G(oτ , uτ ) = EP(oτ+1|sτ+1 )Q(sτ+1|u<τ+1 )[

ln Q(sτ+1|u<τ+1) − ln P(sτ+1)︸ ︷︷ ︸
Risk

− ln P(oτ+1|sτ+1)︸ ︷︷ ︸
Ambiguity︸ ︷︷ ︸

Expected free energy of next action

]

+ EQ(uτ+1|oτ+1 )Q(oτ+1|u≤τ )[G(oτ+1, uτ+1)]︸ ︷︷ ︸
Expected free energy of subsequent actions

Q(uτ |oτ ) = σ [−G(oτ , uτ )]

Q(oτ |u<τ ) = EQ(sτ |u<τ )[P(oτ |sτ )] (3.2)

Posterior beliefs over hidden states and empirical priors over action are then
recovered from the above recursion as follows, noting that one’s most recent
action (ut−1) and current outcome (ot ) are realized (i.e., known) variables:

Q(st ) ∝ P(ot |st )Q(st |u<t )

Q(ut ) = σ [−G(ot, ut )] (3.3)

Equation 3.3 expresses the expected free energy of each potential next action
(uτ ) as the risk and ambiguity of that action plus the average expected free
energy of future beliefs, under counterfactual outcomes and actions (uτ+1).
Readers familiar with the Bellman optimality principle (Bellman, 1952) may
recognize a formal similarity between equation 3.2 and the Bellman equa-
tion because both inherit from the same recursive logic. The sophisticated
inference scheme deals with functionals (functions of belief distributions
over states), while the Bellman equation deals directly with functions of
states.

Figure 2 provides a schematic that casts this recursive formulation as a
deep tree search. This search can be terminated at any depth or horizon.
Later, we will rewrite this recursive scheme in terms of sufficient statis-
tics to illustrate its simplicity. It would be possible to formulate each path
through the tree of actions as an alternative policy and simply sum the ex-
pected free energy, based on current posterior beliefs, along each of those
paths. This is the approach that has traditionally been pursued in active in-
ference (Friston et al., 2016; Friston, FitzGerald et al., 2017), and accounts
for the consequences of action on belief updating. The advance offered by
the sophisticated formulation is that it also accounts for the consequences
of anticipated belief updates for future actions. In other words, an unso-
phisticated creature may entertain the belief that if I did that, I would find out
about this. A sophisticated creature additionally believes that if I found that
out, I would then do this. An intuitive example would be in deciding whether
to check the news, look at the weather forecast, read a novel, or go for a
walk. The first two options might offer similar information gain and would
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730 K. Friston et al.

Figure 2: Deep policies searches. This schematic summarizes the accumulation
of expected free energy over paths or trajectories into the future. This can be
construed as a deep tree search, where the tree branches over allowable actions
at each point in time and the likely outcomes consequent on each action. The
arrows between actions and outcomes have been drawn in the reverse direc-
tion (directed from the future) to depict the averaging of expected free energy
over actions (green arrows) and subsequent averaging over the outcomes en-
tailed by the preceding action (pink arrows). This dual averaging over actions
(given outcomes) and outcomes (given actions) is depicted by the equations in
the upper panel. Here, the green nodes of this tree correspond to outcomes, with
one (realized) outcome at the current time (at the top). The pink nodes denote
actions—here, just four. Note that the search terminates whenever an action is
deemed unlikely or an outcome is implausible. The panel on the lower right rep-
resents the conditional dependencies in the generative model as a probabilistic
graphical model. The parameters of this model are shown on squares, and the
variables are shown on circles. The arrows denote conditional dependencies.
Filled circles are realized variables at the current time—namely, the preceding
action and the subsequent outcome. Note that the expected free energy is shown
here as a functional of beliefs about states, where these beliefs are updated based
on actions and outcomes. In the main text, we drop the explicit dependence on
Q and express the expected free energy directly as a function of outcomes and
actions.
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Sophisticated Inference 731

appeal to an unsophisticated agent. Without knowing the weather, the lat-
ter two will be hard to disambiguate given preferences for walking in the
sun or reading indoors if it were raining. A more sophisticated agent will
find the weather forecast more salient than the news: knowing the weather
will determine whether the next action will be to go for a walk or stay in
and read, given that the preferred option is more likely to be chosen once
the weather is known.

This sort of approach to evaluating a tree of possible policies, using a
recursive form for the expected free energy, has been suggested by oth-
ers (Çatal, Verbelen, Nauta, Boom, & Dhoedt, 2020; Çatal, Wauthier, et al.,
2020), who have applied this in the context of robot vision and navigation.
The distinction between this and the formulation presented here is the so-
phisticated aspect: here, each additional step into the future evaluates the
expected free energy in terms of the beliefs anticipated at that time point,
as opposed to beliefs held (at the present) about that time point. Despite
this difference, the similarities in these approaches speak to the feasibility
of scaling sophisticated inference to high-dimensional

Having established the formal basis of sophisticated planning, in terms
of belief propagation, we now turn to some illustrative examples to show
how it works in practice.

4 Simulations

In this section, we provide some simulations to compare sophisticated and
unsophisticated schemes on the three-arm bandit task described in section
1. Here, we frame this paradigm in terms of a rat foraging in a three-arm
T-maze, where the right and left upper arms are baited with rewards and
punishments, and the bottom arm contains an instructional cue indicating
whether the bait is likely to be on the right or left. In these examples, cue
validity was 95%. The details of this setup have been described elsewhere
(Friston et al., 2016; Friston, FitzGerald et al., 2017). In brief, the genera-
tive model comprises a likelihood mapping between hidden states and out-
comes and probability transitions among states. Here, there are two out-
come modalities. The first reports the experience of the rat in terms of its
location (with distinct outcomes for the instructional cue location – right
versus left). The second modality registered rewarding outcomes, with three
levels (none, reward, and punishment—for example, foot shock). There were
two hidden factors: the rat’s location (with four possibilities) and the la-
tent context (i.e., whether the rewarding arm was on the right or the left).
With these hidden states and outcomes, we specify the generative model in
terms of:

• The sensory mapping A, which maps from the two hidden state fac-
tors (location and context) to each of the two sensory modalities (lo-
cation and reward).
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732 K. Friston et al.

• The transition matrices B, which govern how states at one time point
map onto the next, given a particular action (ut ). The transitions
among locations are action dependent, with four actions (moving
to one of the four locations), while the context did not change dur-
ing any particular trial (i.e., there were no context transitions within
trials).

• The cost vectors C for each hidden state factor, which also specify the
agent’s preferences for each outcome modality. The latter allows for
an alternative formulation that we discuss below.

• The priors over initial states, D.

In the following simulations, the rat experienced 32 trials, each compris-
ing two moves with three outcomes, including an initial outcome that lo-
cated the rat at the start (i.e., center) location. The rat encountered the first
trial with ambiguous prior beliefs about the context, that is, the reward was
equally likely to be right or left.

Given this parameterization of the generative model, the expected free
energy of an action, given outcomes, equation 4.1 can be expressed in terms
of sufficient statistics of posterior beliefs and model parameters as follows:13

G(uτ , oτ ) = su
τ+1 · [ln su

τ+1 + C + H]︸ ︷︷ ︸
Expected free energy of next action

+ uo
τ+1 · G(uτ+1, oτ+1)ou

τ+1︸ ︷︷ ︸
and subsequent actions

sτ ∝ (A · oτ ) � su
τ

su
τ = B(uτ−1)sτ−1

ou
τ = Asu

τ

uo
τ = σ [G(uτ , oτ )] (4.1)

Here, � denotes a Hadamard (i.e., element-wise) product, and the dot no-
tation means A · oτ ≡ AToτ . H is the conditional entropy of the likelihood
distribution. The sufficient statistics are the parameters of the categorical
distributions in equation 3.2, where model parameters are usually hyper-
parameterized in terms of the concentration parameters of Dirichlet distri-
butions (denoted by capital and lowercase bold variables, respectively):

Q(sτ ) = Cat(sτ )

Q(sτ+1|u≤τ ) = Cat(su
τ+1)

Q(uτ |oτ ) = Cat(uo
τ )

13
We have suppressed any tensor notation here by assuming there is only one out-

come modality and one hidden factor. In practice, this assumption can be guaranteed by
working with the Kronecker tensor product of hidden factors. This ensures exact Bayesian
inference, because conditional dependencies among hidden factors are evaluated.
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Sophisticated Inference 733

Q(oτ |u<τ ) = Cat(ou
τ )

P(oτ |sτ ) = Cat(A)

P(sτ+1|sτ , uτ ) = Cat(B(uτ ))

P(s1) = Cat(D)

C = − ln P(sτ )

H = −diag(A · ln A)

P(A) = Dir(a)

P(B) = Dir(b)

P(D) = Dir(d) (4.2)

The equivalent scheme, when specifying preferences in terms of outcomes
C = ln P(oτ ), is

G(uτ , oτ ) = ou
τ+1 · [ln ou

τ+1 + C] + su
τ+1 · H︸ ︷︷ ︸

Expected free energy of next action

+ uo
τ+1 · G(uτ+1, oτ+1)ou

τ+1︸ ︷︷ ︸
and subsequent actions

(4.3)

As noted, it is usually more convenient to search over distributions over
outcomes that are generated by (plausible) hidden states as opposed to
(plausible) outcomes per se. This approach produces a slightly simpler form
for expected free energy:

G(uτ , oτ ) = su
τ+1 · [ln su

τ+1 + C + H︸ ︷︷ ︸
Next action

+ G(uτ+1, Asu
τ+1) · uo

τ+1︸ ︷︷ ︸
and subsequent actions

] (4.4)

Finally, as intimated above, the recursive estimation of expected free energy
from subsequent states can be terminated when the probability of an action
or outcome can be plausibly discounted. In the simulations here, searches
over paths were terminated when the predictive probability fell below 1/16.
This choice of threshold is a little arbitrary and could itself be optimized ei-
ther in relation to the accumulated free energy for a synthetic agent or in
fitting empirical behavior. However, the 1/16 value offers a useful balance
as it enables elimination of policies that are highly unlikely, improving effi-
ciency of planning while also being relatively conservative. It corresponds
to a probability of about 0.06, close to the ubiquitous 0.05 used to reject null
hypotheses in frequentist statistics. We make no claim as to 1/16 being the
optimal threshold in the context of all tasks—or even in those shown here.
However, this is something that could be optimized in relation to a specific
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task by finding the threshold that minimizes the free energy accumulated
over time.

While crude, this works under the assumption that if one policy is 16
times less likely than alternatives given how far it has been evaluated, it is
unlikely to be redeemed by evaluating it further. As such, there are savings
to be had in not doing so. If there were no constraints on computational
resources (temporally or thermodynamically), the pruning threshold could
be set to be zero, ensuring an exhaustive evaluation of all possible poli-
cies. The principles that underwrite sophisticated inference do not depend
on this specific implementational detail, and alternative methods could be
used.

Other approaches to searching through policy trees include schemes like
Thompson sampling (Ortega & Braun, 2010; Osband, Van Roy, Russo, &
Wen, 2019; Thompson, 1933), which sample from the posterior probability
for states and select policies that maximize preferences given this sample.
Like the threshold we have selected, this simplifies the search through al-
ternative policies by using samples in place of evaluating the full posterior
probabilities. With enough exposure to a task, Thompson sampling ensures
that the full space of plausible policies is attempted, possibly finding “op-
timal” policies that are discounted by early pruning under our approach.
In our setting, Thompson sampling would not be appropriate because our
focus is on inference (selecting the best policy within a trial) as opposed to
learning a policy over many exposures to a trial. Having said this, it is worth
highlighting that action selection using the sophisticated inference scheme
involves sampling from the posterior distribution over actions—subject to
some temperature parameter. While this parameter is typically very large
so that the maximum a posteriori action is chosen, this could be relaxed to
ensure the occasional selection of unlikely actions, in the spirit of Thompson
sampling.

The simulations were chosen to illustrate the fidelity of beliefs about ac-
tion (i.e., what to do next) with and without a sophisticated update scheme
(see equations 3.1 and 3.2). We anticipated that sophisticated schemes
would outperform unsophisticated schemes, in the sense that they would
learn any contingencies more efficiently, via more confident action selection.
This learning was elicited by baiting the left arm consistently, after a couple
of trials, so that priors about the initial (latent context) state could be accu-
mulated, in the form of posterior (Dirichlet) concentration parameters (d).
In these generative models, learning is straightforward and involves the
accumulation of posterior concentration parameters (Friston et al., 2016).
For example, to learn the likelihood mapping and initial hidden states, we
have14

14
Note that in order to accumulate beliefs about the context from trial to trial, it is

necessary to carry over posterior beliefs about context from one trial as prior beliefs for
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A = a � a�−1
0 , a0i j =

∑
i

ai j, a =
∑

τ

a + oτ ⊗ sτ

D = d � d�−1
0 , d0i =

∑
i

di, d = d + s1 (4.5)

In these sorts of simulation, the agent succumbs to the epistemic affordance
of the instructional cues until it learns that the reward is always on the left-
hand side—at which point, the expected utility (or extrinsic value) of go-
ing directly to the baited arm exceeds the epistemic affordance (or intrinsic
value) of soliciting the instructional cue. At this point, there is a switch from
explorative to exploitative behavior—the behavioral measure we used to
compare sophisticated and unsophisticated schemes.

4.1 Exploration and Exploitation in a T-Maze. Figure 3 shows the re-
sults of three simulations. In these simulations, the rat performed 32 trials
where each trial had two moves, starting from the central location. The prior
preferences for reward and punishment outcomes were specified with the
prior costs (C) of −2 and 2, respectively.15 In these and subsequent sim-
ulations, actions were selected as the most likely (maximum a posteriori)
action. Therefore, all subsequent simulations are deterministic realizations
of (Bayes’s) optimal behavior based on expected free energy. The simula-
tions start with a sophisticated agent with a planning horizon of two (this
corresponds to the depth of action sequences considered into the future). In
other words, it accumulates the expected free energy for all plausible paths,
until the end of each trial. This enables a confident and definitive epistemic
policy selection that gives way to exploitation, when the rat realizes the re-
ward is always located in the left arm.

If we compare this performance with that of an unsophisticated rat,
which looks just one move ahead, we see a similar behavior. However, there
are two differences. First, the rat is less confident about its behavior because
it does not evaluate the consequences of its actions in terms of belief updat-
ing. Although it finds the instructional cue more attractive, in virtue of its
epistemic affordance, it is still partially compelled to remain at the central
location, which ensures that it will avoid aversive outcomes. Because the

the next (in the form of Dirichlet concentration parameters). For consistency with earlier
formulations of this paradigm, we carry over the beliefs about the initial state on the pre-
vious trial that are evaluated using a conventional backwards pass—namely, the normal-
ized likelihood of any given initial state, given subsequent observations—and probability
transitions based on realized action.

15
Because costs are specified in terms of self-information or surprisal, they have mean-

ingful and quantitative units. For example, a differential cost of three natural units corre-
sponds to a log odds ratio 1:20 and reflects a strong preference for one state or outcome
over another. This is the same interpretation of Bayes factors in statistics (Kass & Raftery,
1995) Here, the difference between reward and punishment was four natural units.
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736 K. Friston et al.

Figure 3: Epistemic foraging in a T-maze: This figure shows the results of simu-
lations based on the T-maze paradigm described in the main text. The left panel
shows the results of simulating 32 trials, where the rat started at the central lo-
cation. Each trial comprises two moves. The insert on the upper left illustrates
foraging for information by interrogating the instructional cue in the lower arm
and then securing the reward in the left arm. The results in each of the three
panels have the same format. The upper row illustrates the predictive distribu-
tion over actions (moves to the central location, the left, the right, and lower
arm, respectively). The darker the color, the more likely the action. The cyan
dots are the actions that were sampled and executed at each epoch, within each
trial. The colored dots above indicate the hidden context—namely, whether the
left or right arm was baited. The middle panel shows the resulting performance
in terms of the expected utility or negative Bayesian risk. The colored circles
show the final outcome (blue location 3—right arm—and green location 2—left
arm). The lowest panel (on the left) shows the posterior beliefs about the hidden
context (right versus left) based on Dirichlet concentration parameters, accumu-
lated over trials. The left panel of results shows confident epistemic behavior
with a planning horizon of two. As is typical in these kinds of simulations, the
agent starts off by foraging for information and responding to the epistemic
affordance of the instructional cue in the lower arm. However, because the re-
ward is always encountered in the left arm (after the first couple of trials), the rat
loses interest in the instructional cue as it becomes more confident about where
the reward is located. This experience-dependent loss of epistemic affordance
leads to a switch from exploratory to exploitative behavior—here, at trial 16.
A similar kind of behavior is shown in the upper right panels; however, here,
the planning horizon was reduced to one. In other words, the rat considered
only the expected free energy of one move ahead. The key difference here is a
less confident (i.e., precise) belief distribution over early actions (highlighted by
the red circles). Although the lower arm has the greatest posterior probability,
there is a nontrivial probability that the rat thinks it should stay where it is. This
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Sophisticated Inference 737

unsophisticated agent underestimates the epistemic affordance of the in-
structional cue, it paradoxically performs better in terms of suspending its
information foraging earlier and switching to exploitative behavior a few
trials before the sophisticated agent (but see below).

For completeness, we show the results of an unsophisticated agent,
whose behavior is predicated on Bayesian risk, that is, with no epistemic
value in play. As might be anticipated, this agent exposes itself to Bayesian
risk, forgoing a visit to the right or left arm, in a way that is precluded by
agents who minimize expected free energy. Here, the starting and instruc-
tional cue locations are equally attractive. When the rat is lucky enough to
select the lower arm, it knows what to do; however, it has no sense that
this is the right kind of behavior. After a sufficient number of trials, it re-
alizes that the reward is always on the left-hand side and starts to respond
in an exploitative fashion, albeit with relatively low confidence. These re-
sults highlight the distinction between sophisticated and unsophisticated
agents who predicate their policy selection on expected free energy and be-
tween unsophisticated agents using expected free energy with and without
epistemic affordance.

In the simulations, the sophisticated agent persevered with its epistemic
behavior for longer than the unsophisticated agent. At first glance, this may
seem to be a paradoxical result if we were measuring performance in terms
of Bayesian risk. However, this is not the case as illustrated in Figure 4F.
Here, we repeated the simulations above but with one small change: we
made the epistemic cue mildly aversive by giving it a cost of one. This has
no effect on the sophisticated agent other than slightly abbreviating the ex-
ploratory phase of activity. However, the unsophisticated agent has, under-
standably, been caught in a bind. The starting location is now marginally
more preferable than the instructional cue—and it has no reason to leave
the center of the maze. While this ensures aversive outcomes are avoided,
it also precludes epistemic foraging and subsequent exploitation. Heuristi-
cally, only the sophisticated agent can see past the short-term pain for the
long-term gain. We will pursue this theme in the final simulations, where
the agent’s planning horizon becomes nontrivial.

mild ambiguity about what should be done means that exploratory behavior
yields to exploitative behavior slightly earlier, at trial 10. Finally, the lower right
panels show the results when expected free energy is replaced by Bayesian risk.
In other words, any epistemic affordance of the instructional cue is precluded.
This renders the posterior probability of staying or moving to the lower arm
the same. When, by chance, the instructional cue is encountered, exploitative
behavior follows; however, there are times when the rat simply stays at the cen-
tral location and learns nothing about the prevailing context. Note that in this
example, there are costly trials in which the rat fails to visit either baited arm.
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738 K. Friston et al.

Figure 4: This reproduces the results of Figure 3 with a deep policy search (of
horizon or depth 2). However, here, we have made the lower arm slightly aver-
sive. This is no problem for the sophisticated agent who sees through the short-
term cost to visit the instructional cue as usual. Because this location is mildly
aversive, the switch to exploitative behavior is now slightly earlier (at trial 12).
Contrast this behavior with an unsophisticated agent that does not look beyond
its next move. The resulting behavior is shown in the lower panels. Unsurpris-
ingly, the agent just stays at the starting position and learns nothing about its
environment—and safely avoids all adverse outcomes at the expense of forgo-
ing any rewards.
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4.2 Deep Planning and Navigation. The simulations show that a so-
phisticated belief-updating scheme enables more confident and nuanced
policy selection, which translates into more efficient exploitative behavior.
To illustrate how this scheme scales up to deeper policy searches, we re-
visit a problem that has been previously addressed using a bespoke prior,
based on the graph Laplacian (Kaplan & Friston, 2018). This problem was
previously framed in terms of navigation to a target location in a maze.
Here, we forgo any special priors to see if the sophisticated scheme could
handle deep tree searches that underwrite paradoxical behaviors, like mov-
ing away from a target to secure it later (see the mountain car problem).
Crucially, in this instance, there was no ambiguity about the hidden states.
However, there was ambiguity or uncertainty about the likelihood map-
ping that determines whether a particular location should be occupied. In
other words, this example uses a more conventional foraging setup in which
the rat has to learn about the structure of the maze while simultaneously
pursuing its prior preferences to reach a target location. Here, exploratory
behavior is driven by the intrinsic value or information gain afforded to
beliefs about parameters of the likelihood model (as opposed to hidden
states). Colloquially, one can think of this as epistemic affordance that is
underwritten by novelty as opposed to salience (Barto et al., 2013; Parr &
Friston, 2019a; Schwartenbeck et al., 2019). Having said this, we anticipated
that exactly the same kind of behavior would arise and that the sophisti-
cated scheme would be able to plan to learn and then exploit what it has
learned.

In this paradigm, a rat has to navigate over the 8 × 8 grid maze, where
each location may or may not deliver a mildly aversive stimulus (e.g., a
foot shock). Navigation is motivated by prior preferences to occupy a tar-
get location—here, the center. In the simulations below, the rat starts at the
entrance to the maze and has a prior preference for safe outcomes (cost of
−1) and against aversive outcomes (cost of +1). Prior preferences for loca-
tion depend on the distance from the current position to the target location.
The generative model for this setup is simple: there was one hidden factor
with 64 states corresponding to all possible locations. These hidden states
generate safe or aversive (somatosensory) outcomes, depending on the lo-
cation. In addition, (exteroceptive) cues are generated that directly report
grid location. The five allowable actions comprise one step in any direction
or staying put.

Figure 5 shows the results of typical simulations when increasing the
planning horizon from 1 through to 4. The key point here is that there is
a critical horizon, which enables our subject to elude local minima of ex-
pected free energy as it pursues its goal. In these simulations, our subject
was equipped with full knowledge of the aversive locations and simply
planned a route to its target location. However, relatively unsophisticated
agents get stuck on the other side of aversive barriers that are closest to
the target location. In other words, they remain in locations in which the
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740 K. Friston et al.

Figure 5: Navigation as inference: This figure reports the result of a simulated
maze navigation. The upper panels illustrate the form of this maze, which com-
prises an 8 × 8 grid. Each location may or may not deliver a mildly aversive
outcome (e.g., a foot shock). At the same time, the rat’s prior preference is to
be near the center of the maze. These prior preferences are shown in image for-
mat in the top right panel, where the log prior preference is illustrated in pink,
with white being the most preferred location. The bottom three panels record
the trajectory or path taken by a rat from the starting location on the lower left.
The three panels show the (deterministic) solutions for a planning horizon of
1, 3, and 4). With horizons of fewer than four, the rat gets stuck on the other
side of an aversive barrier that is closest to the central (i.e., target) location. This
is because any move away from this location (with a small excursion) has a
smaller expected free energy than staying put. However, if the policy search is
sufficiently deep (i.e., a planning horizon greater than 3), the rat can effectively
imagine what would happen if it pressed deeper into the future, enabling long-
term gains to supervene over short-term losses. The result is that the rat infers
and pursues the shortest path to the target location, even though it occasionally
moves away from the center. The bottom three panels illustrate the behavior of
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Sophisticated Inference 741

expected free energy of leaving is always greater than staying put (Cohen,
McClure, & Yu, 2007). This can happen when the planning horizon is insuf-
ficient to enable the rat to contemplate distal (and potentially preferable)
outcomes (as seen in the lower left and middle panels of Figure 5). How-
ever, with a planning horizon of 4 (or more), these local minima are vitiated,
and the rat easily plans—and executes—the shortest path to the target. In
these simulations, the total number of moves was eight, which is sufficient
to reach the target via the shortest path. This sort of behavior is reminiscent
of the prospective planning required to solve things like the mountain car
problem. In other words, the path of least expected free energy can often
involve excursions through state (and belief) space that point away from
the ultimate goal.

To aid with intuition as to the evaluation of alternative policies, we ex-
plicitly evaluated some of the policies that could be chosen with a plan-
ning horizon of two. Assuming the maze layout is known, there is little
uncertainty to resolve, and preferences (i.e., costs) will be the primary de-
terminant of behavior. Starting from the maze entrance (2,8), the options are
shown in Table 2.

Here, we can see that when we consider only the first step, there is a
cost of +2.6 associated with choosing up and a cost of +6.0 for choosing
left. Remembering that cost is formulated as a log probability; this means
up is about 30 times more likely than left and suggests we do not need to
evaluate policies starting with a left (which falls below the 1/16 threshold)
any further. Inspection of the options for the second step of these policies
and comparison with those for the policies starting with up suggests the
cost incurred at the first step cannot be compensated for at the second.

For all policies surviving the 1/16 threshold, we then have to consider
the next step. For the example in Table 2, we could do this simply by taking
the total cost for the second step for each action and, using a softmax oper-
ator as in equation 4.1, compute the relative probability of each action and
the cost incurred on averaging under these probabilities. Adding this to the

an unsophisticated agent. This is as described in Kaplan and Friston (2018) but
with constant preferences as in the upper panels and variable policy depths. In
the example, the planning horizon of three is sufficient for the rat to find the
shortest path. However, this depends on the rat’s choosing the left path at the
first junction—which is not guaranteed, as four moves along the left or the right
path lead to squares that are equally preferred. Consistent with this, for the pol-
icy depth of 4, the right path is chosen. After the first four moves, the rat decides
to cross the aversive square to reach the target location. This four-step policy al-
lows the rat to entertain the benefits of spending multiple steps in the target
location, at the cost of a single foot shock. In these simulations, the rat knew the
locations of the aversive outcomes and was motivated by minimizing Bayesian
risk.
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742 K. Friston et al.

Table 2: Example Policy Evaluation.

Step 2

Cost (nats) Cost (nats)

Square Target Square Target
Action Color Proximity Action Color Proximity

Stay at (2,8) −1 +4.2 Up to (2,7) −1 +3.6
Down to (2,8) −1 +4.2
Left to (1,8) +1 +5.0
Right to (3,8) +1 +3.6
Stay at (2,8) −1 +4.2

Up to (2,7) −1 +3.6 Up to (2,6) +1 +2.2
Down to (2,8) −1 +4.2
Left to (1,7) +1 +4.4
Right to (3,7) −1 +2.8
Stay at (2,7) −1 +3.6

Down to (2,8) −1 +4.2 Up to (2,7) −1 +3.6
Down to (2,8) −1 +4.2
Left to (1,8) +1 +5.0
Right to (3,8) +1 +3.6
Stay at (2,8) −1 +4.2

Left to (1,8) +1 +5.0 Up to (1,7) +1 +4.4
Down to (1,8) +1 +5.0
Left to (1,8) +1 +5.0
Right to (2,8) −1 +4.2
Stay at (1,8) +1 +5.0

Right to (3,8) +1 +2.8 Up to (3,7) −1 +2.8
Down to (3,8) +1 +3.6
Left to (2,8) −1 +4.2
Right to (4,8) −1 +4.2
Stay at (3,8) +1 +2.8

cost from the first step and repeating for all policies not eliminated by the
1/16 threshold, we arrive at the (log) probability distribution over the first
action—here, favoring up.

We have characterized the degree of sophistication in terms of planning
as inference. In this setting, there was no ambiguity about outcomes that
would license an explanation in terms of epistemic affordance or salience
of the sort that motivated behavior in the T-maze examples of section 4.1.
However, we can reintroduce epistemics by introducing uncertainty about
the locations that deliver aversive outcomes. Exploration now becomes
driven by curiosity about the parameters of the likelihood mapping (see
equation 2.9). One can illustrate the minimization of expected free energy
in terms of curiosity and novelty (Barto et al., 2013; Schmidhuber, 2006) by
simulating a rat that has never been exposed to the maze previously. This
was implemented by setting the prior (Dirichlet) parameters of the likeli-
hood mapping between hidden states and somatosensory outcomes to a
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Sophisticated Inference 743

small value (i.e., 1/64). In terms of sufficient statistics, the expected free
energy is now supplemented with a novelty term based on posterior ex-
pectations about the likelihood mapping (Friston, Lin, et al., 2017):

G(uτ−1, oτ−1) = su
τ · [ln su

τ + C + H]︸ ︷︷ ︸
Next action

− ou
τ · Wsu

τ︸ ︷︷ ︸
Novelty

+ uo
τ · G(uτ , oτ )ou

τ︸ ︷︷ ︸
Subsequent actions

W = 1
2

(a�−1 − a�−1
0 ) (4.6)

In addition, we removed preferences for a particular location in order to
study purely exploratory behavior. The results of the ensuing simulation
are shown in Figure 6. In this example, the rat was allowed to make 64 con-
secutive moves while updating the Dirichlet parameters after every move.
The top panels 6 show the resulting trajectory. The key point to observe
here is that nearly every location has been explored. This rests on a trajec-
tory in which previously visited locations lose their novelty or epistemic
affordance, thereby promoting policies that take the rat into uncharted ter-
ritory. This kind of exploratory behavior disappears if we replace expected
free energy with Bayesian risk. In this setting, after the first move, the rat
returns to its original location and just sits there for 64 trials (see the bottom
panels of Figure 6).

Finally, to simulate curiosity under a task set, we reinstated prior
preferences about location. In this simulation, the rat has to resolve the
dual imperative to satisfy its curiosity, while at the same time realizing
preferences for being at the center of the maze. In other words, it has to con-
textualize its goal-seeking behavior in relation to what it knows about how
to realize those goals. Figure 7 shows the results of a simulation in which
the rat was given five exposures to the maze, each comprising eight moves
with a planning horizon of four. Within four exposures, it has learned what
it needs to learn—about the aversive locations—to plan the shortest path to
its target location and execute that path successfully (dotted black line in the
left panel of Figure 7). In contrast to Figure 6, the exploration is now limited
to preferred locations with precise likelihood mappings that are sufficient
to encompass the shortest path (compare the left panels of Figures 6 and 7).

This completes our numerical analyses, in which we have looked at deep
policy searches predicated on expected free energy, where expected free en-
ergy supplements Bayesian risk with epistemic affordance in terms of either
salience (resolving uncertainty about hidden states) or novelty (resolving
uncertainty about hidden model parameters).

5 Conclusion

This letter has described a recursive formulation of expected free energy
that effectively instigates a deep tree search for planning as inference.
The ensuing planning is sophisticated, in the sense that it entails beliefs
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Figure 6: Exploration and novelty: This figure reports the results of a simulation
in the same maze as in Figure 5. However, here we removed prior knowledge
about which locations should be avoided and prior preferences for being near
the center. This means that the only incentives for movement are purely epis-
temic in nature: curiosity, or the novelty of finding out “what would happen
if I did that.” This produces a trajectory of moves that explore the locations,
building up a picture of where aversive (a foot shock) stimuli are elicited and
where they are not. The key aspect of this trajectory is that it avoids revisiting
previously explored locations, to provide a nearly optimal coverage of the ex-
ploration space. The number of moves was 64 (with an updating of the posterior
beliefs about likelihood parameters after each move). This means that in prin-
ciple, the rat could have visited every location. Indeed, nearly every location
has been visited, as shown on the upper right, in terms of the final likelihood
of receiving an aversive stimulus at each location. The bottom panels show the
same results, but after replacing expected free energy (that includes the novelty
term) with Bayesian risk (that does not). Unsurprisingly, the Bayesian risk agent
has no imperative to move, because it has no preferences about its location and,
after the first move, realizes it is in a safe location. In other words, after the first
move, it returns to the starting location and remains there for the remainder of
available trials. As such, it learns nothing about the mapping between location
and sensory outcomes.
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Sophisticated Inference 745

Figure 7: Exploration under a task set: This figure reproduces the same
paradigm as in Figure 6 but reinstating prior preferences about being near the
center of the maze (i.e., a task set). In this instance, the imperatives for action
include both curiosity and pragmatic drives to realize prior preferences. The up-
per left panel shows a sequence of trajectories over five trials, where the rat was
replaced at the initial location following eight moves. The upper right panel
shows the final accumulated Dirichlet counts depicting the probability of an
aversive outcome at each location. This accumulated evidence—or familiarity
with the environment—enables the rat to plan the shortest path to its target
after just four exposures. This path is shown as the black dashed line in the
left panel. Compare the likelihood mapping with Figure 6. Here, the agent re-
stricted its exploration to those parts of the maze that encompass the path to its
goal. The lower panels show an even more restrictive exploration for an unso-
phisticated rat, which fails to find the shortest path along the white squares.
This speaks to the enhanced explorative drive resulting from sophisticated
inference.
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about beliefs—in virtue of accumulating predictive posterior expectations
of expected free energies down plausible paths. In other words, instead
of just propagating beliefs about the consequences of successive actions,
the scheme simulates belief updating in the future, based on preceding be-
liefs about the consequences of action. This scheme was illustrated using a
simple T-maze problem and a navigation problem that required a deeper
search.

In section 1, we noted that active inference may be difficult to scale, al-
though remarkable progress has been made in this direction recently using
amortized inference and sampling. For example, Ueltzhöffer (2018) param-
eterized both the generative model and approximate posterior with func-
tion approximators, using evolutionary schemes to minimize variational
free energy when gradients were not available. Similarly, Millidge (2019)
amortized perception and action by learning a parameterized approxima-
tion to expected free energy. Çatal et al. (2019) focused on learning prior
preferences, using a learning-from-example approach. Tschantz et al. (2019)
extended previous point-estimate models to include full distributions over
parameters. This allowed them to apply active inference to continuous con-
trol problems (e.g., the mountain car problem, the inverted pendulum task,
and a challenging hopper task) and demonstrate an order of magnitude in-
crease in sampling efficiency relative to a strong model-free baseline (Lilli-
crap et al., 2015). (See Tschantz et al., 2019, for a full discussion and a useful
deconstruction of active inference, in relation to things like model-based
reinforcement learning; Schrittwieser et al., 2019.)

Note that the navigation example is an instance of planning to learn. As
such, it solves the kinds of problems for which reinforcement learning and
its variants usually address. In other words, we were able to solve a learn-
ing problem from first (i.e., variational) principles without recourse to back-
ward induction or other (belief-free) schemes like Q-learning, SARSA, or
successor representations (e.g., Dayan, 1993; Gershman, 2017; Momenne-
jad et al., 2017; Russek, Momennejad, Botvinick, Gershman, & Daw, 2017).
This is potentially important because predicating an optimization scheme
on inference, as opposed to learning, endows it with a context sensitivity
that eludes many learning algorithms (Daw, Gershman, Seymour, Dayan,
& Dolan, 2011). In other words, because there are probabilistic representa-
tions of time-sensitive hidden states (and implicit uncertainty about those
states), behavior is motivated by resolving uncertainty about the context in
which an agent is operating. This may be the kind of (Bayesian) mechanics
that licenses the notion of competent schemes that can both learn to plan
and plan to learn.

The current formulation of active inference does not call on sampling or
matrix inversions; the Bayes optimal belief-updating deals with uncertainty
in a deterministic fashion. Conceptually, this reflects the difference between
the stochastic aspects of random dynamical systems and the determinis-
tic behavior of the accompanying density dynamics, which describe the
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probabilistic evolution of those systems (e.g., the Fokker-Planck equation).
Because active inference works in belief spaces, that is, on statistical mani-
folds (Da Costa, Parr, Sengupta, et al., 2020), there is no need for sampling or
random searches; the optimal paths are instead evaluated by propagating
beliefs or probability distributions into the future to find the path of least
variational free energy (Friston, 2013).

In the setting of deep policy searches, this approach has the practical ad-
vantage of terminating searches over particular paths when they become
implausible. For example, in the navigation example, there were five ac-
tions and 64 hidden states, leading to a large number of potential paths
(1.0486 · 1010 for a planning horizon of four and 1.0737 · 1015 for a plan-
ning horizon of six). However, only a tiny fraction of these paths is actually
evaluated—usually several hundred, which takes a few hundred millisec-
onds on a personal computer. Given reasonably precise beliefs about cur-
rent states and state transitions, only a small number of paths are eligible for
evaluation, which leads us to our final comment on the scalability of active
inference.

5.1 Limitations. In one sense, we have addressed scaling through the
computational efficiency afforded by belief propagation using a sophisti-
cated scheme. However, we have illustrated this scheme only on rather
trivial problems. In principle, one can scale up the dimensionality of state
spaces (and outcomes) with a degree of impunity. This follows from the fact
that the number of plausible states (and transitions) can be substantially
constrained, using the right kind of generative model—one that leverages
factorizations and sparsity. For example, the factorization between hidden
states and actions used above rests on the implicit assumption that every ac-
tion is allowed from every state. This is a strong assumption but perfectly
apt for many generative models.

One could also call on a related symmetry—namely, a hierarchical sep-
aration of temporal scales in deep models, where one Markov decision
process is placed on top of another (Friston, Rosch, et al., 2017; George
& Hawkins, 2009; Hesp, Smith, et al., 2019; Rikhye et al., 2019). In these
models, transitions at the higher level usually unfold at a slower timescale
than the level below. This engenders semi-Markovian dependencies that
can generate complicated and structured behaviors. In this setting, one
could consider hidden states at higher levels that generate the initial and
final states of the level below. Policy optimization within each level, using
a sophisticated scheme, could then realize the trajectory between the ini-
tial states (i.e., empirical priors over initial states) and final states (i.e., pri-
ors that determine the cost function and subsequent empirical priors over
action).

Finally, it should be noted that in many applications, the states and ac-
tions of real-world processes are continuous, which presents a further scal-
ing challenge for discrete state-space models However, it is possible to
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combine sophisticated (discrete) schemes with continuous models, pro-
vided one uses the appropriate message passing between the continuous
and discrete levels. For example, Friston, Parr, et al. (2017) used a Markov
decision process to drive continuous eye movements. Indeed, it would be
interesting to revisit simulations of saccadic searches using sophisticated
inference, especially in the context of reading.

Appendix: Expected Free Energy

This appendix considers two lemmas that underwrite expected free energy
from two complementary perspectives. The first is based on a generative
model that combines the principles of optimal Bayesian design (Lindley,
1956) and decision theory (Berger, 2011), while the second is based on a prin-
cipled account of self-organization (Friston, 2019; Parr et al., 2020). Finally,
we consider several corollaries that speak to the notions of active inference
(Friston et al., 2015), empowerment (Klyubin, Polani, & Nehaniv, 2005), in-
formation bottlenecks (Tishby et al., 1999), self-organization (Friston, 2013),
and self-evidencing (Hohwy, 2016). In what follows, Q(oτ , sτ , π ) denotes a
predictive distribution over future variables and policies, conditioned on
initial observations, while P(oτ , sτ , π ) denotes a generative model—that is,
a marginal distribution over final states and policies. For simplicity, we omit
model parameters and assume policies start from the current time point,
allowing us to omit the variational free energy from the generalized free
energy (since observational evidence is the same for all policies).

A.1 Objective. Our objective is to establish a generalized free energy
functional that can be minimized with respect to a posterior over policies,
noting that this posterior is necessary to marginalize the joint posterior over
hidden states and policies to infer hidden states. To comply with Bayesian
decision theory, generalized free energy can be constructed to place an up-
per bound on Bayesian risk, which corresponds to the divergence between
the predictive distribution over outcomes and prior preferences. In other
words, Bayesian risk is the expected surprisal or negative log evidence.
Confusingly, Bayesian risk and expected risk are two different quantities.
The former is the expected surprisal, while the latter is a KL-divergence
between predicted and preferred outcomes (or states). To comply with op-
timal Bayesian design, one can specify priors over policies that lead to states
with a precise likelihood mapping to observable outcomes.

Lemma 1 (Bayes Optimality). Generalized free energy16 is an upper bound on
risk, under a generative model whose priors over policies lead to states with precise
likelihoods:

16
Equation A.1 follows from 3.1 when treating F(π ) and E(π ) as constants, that is,

ignoring past observations and empirical priors over policies.
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F[Q(s, π )] = EQ[ln Q(sτ , π ) − ln P(oτ , sτ )]︸ ︷︷ ︸
Generalised free energy

≥ DKL[Q(oτ )||P(oτ )]︸ ︷︷ ︸
Risk

log P(π ) = EQ(oτ ,sτ |π )[log P(oτ |sτ )]︸ ︷︷ ︸
Empirical prior

(A.1)

Note that P(π ) is an empirical prior because it depends on the predictive density
that depends on past observations. The priors over hidden states and outcomes can
be regarded as a target distribution or prior preferences.

Proof. By substituting the empirical prior, equation A.1, into the expression
for free energy, we have (noting that policies and outcomes are condition-
ally independent, given hidden states):

F[Q(s, π )] = EQ[DKL[Q(sτ |π )||P(sτ )]]︸ ︷︷ ︸
Expected risk (States)

+ DKL[Q(π )||P(π )]︸ ︷︷ ︸
Complexity (Policies)

≥ EQ[DKL[Q(sτ |π )||P(sτ )]]︸ ︷︷ ︸
Expected risk (States)

= EQ[DKL[Q(oτ |π )||P(oτ )]]︸ ︷︷ ︸
Expected risk (Outcomes)

+EQ[DKL[Q(sτ |oτ , π )||P(sτ |oτ )]]︸ ︷︷ ︸
Expected evidence bound

≥ EQ[DKL[Q(oτ |π )||P(oτ )]]︸ ︷︷ ︸
Expected risk (Outcomes)

= DKL[Q(oτ )||P(oτ )]︸ ︷︷ ︸
Risk

+EQ[DKL[Q(oτ |π )||Q(oτ )]︸ ︷︷ ︸
Mutual information

≥ DKL[Q(oτ )||P(oτ )]︸ ︷︷ ︸
Risk

(A.2)

These inequalities show that generalized free energy upper bounds the pre-
dictive divergence from the marginal likelihood over outcomes (i.e., model
evidence). When this bound is minimized, (1) the complexity cost of policies
is minimized, enforcing prior beliefs about policies; (2) the predictive poste-
rior over hidden states becomes the posterior under the generative model;
and (3) policies and outcomes become independent. This independence fol-
lows by construction of the free energy functional and means that final out-
comes do not depend on initial conditions, implying a form of steady state
(see below). �
Corollary 1 (Expected Free Energy). The free energy can now be minimized with
regard to the posterior over policies by expressing free energy in terms of expected
free energy:
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F[Q(s, π )] = EQ(π )[G(π ) + ln Q(π )]

Q(π ) = arg min
Q

F[Q(s, π )] ⇒ − ln Q(π ) = G(π )

G(π ) = EQ(oτ ,sτ |π )[ln Q(sτ |π ) − ln P(oτ , sτ )︸ ︷︷ ︸
Expected free energy

]

= DKL[Q(sτ |π )||P(sτ )]︸ ︷︷ ︸
Expected risk

−EQ(oτ ,sτ |π )[ln P(oτ |sτ )]︸ ︷︷ ︸
Expected ambiguity

(A.3)

This renders free energy F[Q(s, π )] = EQ[G(π )] − H[Q(π )] an expected energy
minus the entropy of the posterior over policies, in the usual way. Finally, we can
express the expected free energy of a policy as a bound on information gain and
Bayesian risk:

G(π ) = EQ[DKL[Q(sτ |oτ , π )||P(sτ |oτ )]]︸ ︷︷ ︸
Expected evidence bound

− EQ[ln P(oτ )]︸ ︷︷ ︸
Expected log evidence

− EQ[DKL[Q(sτ |oτ , π )||Q(sτ |π )]]︸ ︷︷ ︸
Expected information gain

≥ −EQ[DKL[Q(sτ |oτ , π )||Q(sτ |π )]]︸ ︷︷ ︸
Expected information gain

−EQ[ln P(oτ )]︸ ︷︷ ︸
Bayesian risk

(A.4)

This inequality shows that the free energy of a policy upper bounds a mixture of its
expected information gain (Lindley, 1956) and Bayesian risk (Berger, 2011), where
Bayesian risk is expected log evidence.

Remark. Here, policies are treated as random variables, which means plan-
ning as inference (Attias, 2003; Botvinick & Toussaint, 2012) becomes belief
updating under optimal Bayesian design priors (Lindley, 1956; MacKay,
1992). One might ask what licenses these priors above. Although they
can be motivated in terms of information gain (see equation A.4), there
is a more straightforward motivation that arises as a steady-state solu-
tion. We now turn to this complementary perspective that inherits from the
Bayesian mechanics described in Friston (2019). Here, we are interested in
situations when the predictive distribution attains its steady-state or target
distribution.

It may seem odd to predicate optimal behavior on a steady-state distribu-
tion. However, the fact that action and its consequences can be expressed
probabilistically implies the existence of a (steady-state) joint distribution
that does not change over time. In what follows, we use the existence of
this steady-state distribution to express the posterior over policies as a func-
tional of the distribution over other variables, given a particular policy.
This functional is expected free energy. This represents a deflationary ap-
proach to optimality, in the sense that optimal policies are just those that
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Sophisticated Inference 751

underwrite a steady state. The question now is, What kind of steady state
are we interested in?

We will make a distinction between simple and general steady states in
terms of the degeneracy (i.e., many-to-one mapping) of policies to any final
state. Simple steady states are characterized by a unique path of least action
from some initial observations to a final state. This would be appropriate
for describing classical systems, such as a pendulum or planetary bodies.
Conversely, a general steady state allows for multiple paths from initial ob-
servations to the final state, which means the entropy or uncertainty about
which path was actually taken is high. We will be particularly interested
in the autonomous behavior of systems whose steady state is maintained
by multiple (degenerate) paths or policies. The ensuing distinction can be
characterized by a scalar quantity corresponding to the relative entropy or
precision of policies and outcomes, conditioned on final states (and initial
observations). This scalar β ≥ 0 is not a free parameter; it just characterizes
the kind of steady state at hand. Note that in this setup, the notion of opti-
mality is replaced by (or reduces to) the existence of a steady state, which
may or may not be simple.

A.2 Objective. We seek distributions over policies that afford steady-
state solutions, that is, when the final distribution does not depend on initial
observations. Such solutions ensure that on average, stochastic policies lead
to a steady-state or target distribution specified by the generative model.
These solutions exist in virtue of conditional independencies, where the
hidden states provide a Markov blanket (cf. information bottleneck) that
separates policies from outcomes. In other words, policies cause final states
that cause outcomes. Put simply, policies influence outcomes, but only via
hidden states. We will see below that there is a family of such solutions,
where the Bayes optimality solution above is a special (canonical) case. In
what follows, Q(oτ , sτ , π ) := P(oτ , sτ , π |o≤) can be read as a posterior distri-
bution, given initial conditions.

Lemma 2 (Nonequilibrium Steady State). When the surprisal of policies corre-
sponds to a Gibbs free energy G(π, β ), the final distribution attains steady state:

− log Q(π ) = G(π, β ) ⇒ DKL[Q||P] = 0

G(π, β ) = DKL[Q(sτ |π )||P(sτ )]︸ ︷︷ ︸
Expected risk

−EQ(oτ ,sτ |π )[β log P(oτ |sτ )]︸ ︷︷ ︸
Expected ambiguity

β = EQ[ln Q(π |sτ )]
EQ[ln P(oτ |sτ )]

= H(	|Sτ )
H(Oτ |Sτ )

P = P(oτ |sτ )Q(π |sτ )P(sτ )

Q = P(oτ |sτ )Q(sτ |π )Q(π ) (A.5)
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Here, β ≥ 0 characterizes a steady state in terms of the relative precision of policies
and final outcomes, given final states. The generative model stipulates steady state,
in the sense that distribution over final states (and outcomes) does not depend on
initial observations. Here, the generative and predictive distributions simply ex-
press the conditional independence between policies and final outcomes, given final
states. Note that when β = 1, Gibbs free energy becomes expected free energy.

Proof. Substituting equation A.5 into the KL divergence between the pre-
dictive and generative distributions gives

DKL [Q||P] = EQ

[
ln

Q(sτ |π )Q(π )
Q(π |sτ )P(sτ )

]

= EQ[ln Q(π ) + ln Q(sτ |π ) − ln P(sτ )] − EQ[ln Q(π |sτ )]

= EQ(π )[ln Q(π ) + EQ(oτ ,sτ |π )[ln Q(sτ |π ) − ln P(sτ )

− β ln P(oτ |sτ )]]

= EQ(π ) [ln Q(π ) + G(π, β )]

⇒
− ln Q(π ) = G(π, β ) ⇒ DKL[Q||P] = 0 ⇒ β = H(	|Sτ )

H(Oτ |Sτ )
(A.6)

This solution describes a particular kind of steady state, where policies lead
to (steady) states with more or less precise likelihoods, depending on the
value of β. �
Remark. At steady state, hidden states (and outcomes) “forget” about ini-
tial observations, placing constraints on the distribution over policies that
can be expressed in terms of a Gibbs free energy. In the limiting case that
β = 0 (i.e., when Q(π |s) tends to a delta function), we obtain a simple steady
state where

G(π, 0) = EQ(oτ ,sτ |π )

[
ln

Q(sτ |π )
P(sτ )

]
= DKL[Q(sτ |π )||P(sτ )] (A.7)

This solution corresponds to a standard stochastic control, variously
known as KL control or risk-sensitive control (van den Broek et al., 2010).
In other words, one picks policies that minimize the divergence between
the predictive and target distribution. In different sorts of systems, the re-
lationship between the entropies (β) may differ. As such, different values
of this parameter may be appropriate in describing these kinds of system.
More generally (i.e., β > 0), policies are more likely when they lead to states
with a precise likelihood mapping. One perspective, on the distinction be-
tween simple and general steady states, is in terms of conditional uncer-
tainty about policies. For example, simple (i.e., β = 0) steady states preclude
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Sophisticated Inference 753

uncertainty about which policy led to a final state. This would be appropri-
ate for describing classical systems (that follow a unique path of least ac-
tion), where it would be possible to infer which policy had been pursued
given the initial and final outcomes. Conversely, in general steady-state sys-
tems (e.g., mice and men), simply knowing that “you are here” does not tell
me “how you got here,” even if I knew where you were this morning. Put
another way, there are lots of paths or policies open to systems that attain a
general steady state.

The treatment in Friston (2019) effectively turns the steady-state lemma
on its head by assuming the steady-state in equation A.5 is stipulatively
true—and then characterizes the ensuing self-organization in terms of
Bayes optimal policies. In active inference, we are interested in a cer-
tain class of systems that self-organize to general steady states: those that
move through a large number of probabilistic configurations from their
initial state to their final (steady) state. In terms of information geometry,
this means that the information distance between any initial and the fi-
nal (steady) state is large. In the current setting, we could replace infor-
mation distance (Crooks, 2007; Kim, 2018) by information gain (Lindley,
1956; MacKay, 1992; Still & Precup, 2012). That is, we are interested in sys-
tems that attain steady state (i.e., target distributions) with policies associ-
ated with a large information gain.17 Although not pursued here, general
steady states with precise likelihood mappings have precise Fisher infor-
mation matrices and information geometries that distinguish general forms
of self-organization from simple forms (Amari, 1998; Ay, 2015; Caticha,
2015; Ikeda, Tanaka, & Amari, 2004; Kim, 2018). This perspective can be
unpacked in terms of information theory with the following corollaries,
which speak to active inference, empowerment, information bottlenecks,
self-organisation, and self-evidencing.

Corollary 2 (Active Inference). If a system attains a general steady state, then by
the Bayes optimality lemma, it will appear to behave in a Bayes optimal fashion
in terms of both optimal Bayesian design (i.e., exploration) and Bayesian decision
theory (i.e., exploitation). Crucially, the loss function defining Bayesian risk is the
negative log evidence for the generative model entailed by an agent. In short, sys-
tems (i.e., agents) that attain general steady states will look as if they are responding
to epistemic affordances (Parr & Friston, 2017).

Corollary 3 (Empowerment). At its simplest, empowerment (Klyubin et al.,
2005) underwrites exploration (i.e., intrinsic motivation) by exploring as many
states in the future as possible—and thereby keeping options open. This exploratory

17
Note that a divergence such as information gain is not a measure of distance. The in-

formation distance (a.k.a. information length) can be regarded as the accumulated diver-
gences along a path on a statistical manifold from the initial location to the final location.
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imperative is evinced clearly if we generalize free energy to include β:

F[Q(s, π )] = EQ

[
ln

Q(sτ , π )
P(oτ |sτ )βP(sτ )

]
= EQ

[
ln

Q(sτ |π )Q(π )
P(sτ )Q(π |sτ )

]

= DKL[Q(sτ |π )||P(sτ )]︸ ︷︷ ︸
Risk

− I(	; Sτ |o≤)︸ ︷︷ ︸
Empowerment

(A.8)

This expresses the free energy of the predictive distribution over final states and
policies in terms of risk and empowerment. Minimizing free energy with respect
to policies therefore maximizes empowerment—namely, the mutual information
between policies and their final states, given initial observations. The epistemic
aspect of empowerment can be seen by expressing it in terms of expected ambiguity:

I(	; Sτ |o≤)︸ ︷︷ ︸
Empowerment

= H(	|o≤︸ ︷︷ ︸
Entropy

) −EQ[β ln P(oτ |sτ )]︸ ︷︷ ︸
Expected ambiguity

(A.9)

On this reading, empowerment corresponds to minimizing expected ambiguity
while maximizing the entropy of policies—in other words, keeping (policy) options
open by avoiding situations from which there is only one escape route. Note that
empowerment is a special case of active inference when we can ignore risk (i.e.,
when all policies are equally risky).

Corollary 4 (Information Bottleneck). The information bottleneck method and
related formulations (Bialek, Nemenman, & Tishby, 2001; Still, Sivak, Bell, &
Crooks, 2012; Tishby et al., 1999; Tishby & Polani, 2010) can be seen as gener-
alizations of rate distortion theory. According to this view, we can consider hidden
states as an information bottleneck (cf. Markov blanket) that plays the role of a com-
pressed representation of past outcomes that best predict future outcomes. Here, we
can regard the policies as mapping between initial and final observations via hidden
states. The information bottleneck method provides an objective function that can
be minimized with respect to the distribution over policies. This (information bot-
tleneck) objective function can be expressed in terms of the expected Gibbs energy
as follows:

EP(o≤|π ) [G(π, β )] = EP(oτ ,sτ ,o≤|π )

[
ln

P(sτ |o≤, π )
P(sτ )

+ β ln
P(oτ )

P(oτ |sτ )
− β ln P(oτ )

]

= I(O≤; Sτ |π ) − βI(Sτ ; Oτ )︸ ︷︷ ︸
Information bottleneck

−EP[β ln P(oτ )]︸ ︷︷ ︸
Bayesian risk

(A.10)

This means the average Gibbs energy of a policy, over initial observations, com-
bines the information bottleneck objective function and Bayesian risk. Minimizing
the first term of the objective function (i.e., the mutual information between initial
outcomes and hidden states) plays the role of compression, while maximizing the
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second (i.e., the mutual information between hidden states final and outcomes) en-
sures the information gain that characterizes general steady states. Indeed, when
relative precision β = 1, it is straightforward to show that the information bottle-
neck is an upper bound on expected information gain:

I(O≤; Sτ |π ) − I(Sτ ; Oτ )︸ ︷︷ ︸
Information bottleneck

= EP(oτ ,sτ ,o≤|π )[ln Q(sτ |π ) − ln P(sτ |oτ )]

= −EP(oτ |π )[DKL[Q(sτ |oτ , π )||Q(sτ |π )]︸ ︷︷ ︸
Expected information gain

+ DKL[Q(sτ |oτ , π )||P(sτ |oτ )]︸ ︷︷ ︸
Expected evidence bound

]

≥ −EP(oτ |π )[DKL[Q(sτ |oτ , π )||Q(sτ |π )]︸ ︷︷ ︸
Expected information gain

] = −I(Sτ ; Oτ |O≤, π ) (A.11)

Because the information bottleneck objective function is an average over initial ob-
servations, it cannot be used directly for online (active) planning as inference; how-
ever, it can be used to learn fixed outcome-action policies (Hafez-Kolahi & Kasaei,
2019; Tishby & Zaslavsky, 2015). Note that the information bottleneck method is
a special case of active inference, when we can ignore Bayesian risk (i.e., when all
policies are equally risky).

Corollary 5 (Self-Organization). The average of expected free energy over policies
can be decomposed into risk and conditional entropy:

EQ(π )[G(π )] = EQ[ln Q(sτ |π ) − ln P(oτ , sτ )]︸ ︷︷ ︸
Expected free energy

= EQ[DKL[Q(sτ |π )||P(sτ )]︸ ︷︷ ︸
Expected risk

+EQ[− ln Q(oτ |sτ )]︸ ︷︷ ︸
Expected ambiguity

= EQ[DKL[Q(sτ |π )||P(sτ )]︸ ︷︷ ︸
Expected risk

+ H(Oτ |Sτ , o≤)︸ ︷︷ ︸
Conditional entropy

≥ 0 (A.12)

This decomposition means that if the expected free energy of policies is small on
average, the predictive distribution over hidden states will converge to the prior or
preferred distribution, while uncertainty about consequent outcomes will be small.
In the limit, the predictive distribution over hidden states becomes the prior distri-
bution, with no uncertainty about outcomes. This can be read as the limiting case
of self-organization to prior beliefs.

Corollary 6 (Self-Evidencing). The average of expected free energy over policies
furnishes an upper bound on the (negative) expected log evidence of outcomes
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Figure 8: Active inference and other schemes. This schematic summarizes the
various imperatives implied by minimizing a free energy functional of posterior
beliefs about policies, ensuing states, and subsequent outcomes. The informa-
tion diagrams in the upper panels represent the entropy of the three variables,
where intersections correspond to shared information or mutual information.
A conditional entropy corresponds to an area that precludes the variable on
which the entropy is conditioned. Note that there is no overlap between poli-
cies and outcomes that is outside hidden states. This is because hidden states
form a Markov blanket (i.e., information bottleneck) between policies and out-
comes. Two complementary formulations of minimizing expected free energy
are shown on the right (in terms of risk and ambiguity) and left (in terms of in-
formation gain and entropy), respectively. Both will tend to increase the overlap
or mutual information between hidden states and outputs while minimizing en-
tropy or Bayesian risk. In these diagrams, we have assumed steady state, such
that risk becomes the mutual information between policies and hidden states.
For simplicity, we have omitted dependencies on initial observations. The var-
ious schemes or formulations considered in the text are shown at the bottom.
These demonstrate that Bayesian decision theory (i.e., KL control and Bayesian
risk) and optimal Bayesian design figure as complementary imperatives.

and the mutual information between these outcomes and their causes (i.e., hidden
states):

EQ(π )[G(π )] = EQ[ln Q(sτ |π ) − ln P(oτ , sτ )]︸ ︷︷ ︸
Expected free energy
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= −EQ(oτ ,π )[DKL[Q(sτ |oτ , π )||Q(sτ |π )]]︸ ︷︷ ︸
Expected information gain

− EQ(oτ )[ln P(oτ )]︸ ︷︷ ︸
Expected log evidence

+ EQ(oτ ,π )[DKL[Q(sτ |oτ , π )||P(sτ |oτ )]]︸ ︷︷ ︸
Expected evidence bound

≥ − I(Sτ , Oτ |	, o≤)︸ ︷︷ ︸
Mutual information

− EQ(oτ )[ln P(oτ )]︸ ︷︷ ︸
Expected log evidence

(A.13)

This decomposition means that if the expected free energy of policies is, on aver-
age, small, the expected log evidence and the mutual information between predicted
states and the outcomes they generate will be large. In the limit, expected log evi-
dence is maximized, with no uncertainty about outcomes, given hidden states. This
can be read as the limiting case of self-evidencing with unambiguous outcomes.

It can sometimes be difficult to see the relationships between the vari-
ous conditional entropy and mutual information terms that constitute the
free energy functional. Figure 8 tries to clarify these relationships using
information diagrams. This schematic highlights the complementary de-
compositions of expected free energy in terms of risk and ambiguity—and
information gain and entropy. These decompositions are summarized in
terms of the imperative to minimize various segments of the information
diagrams. Figure 8 then highlights the particular components that figure in
special cases, such as an optimal Bayesian decisions and design.

Software Note

Although the generative model changes from application to application,
the belief updates described in this letter are generic and can be imple-
mented using standard routines (here, spm_MDP_VB_XX.m). These rou-
tines are available as Matlab code in the SPM academic software: http:
//www.fil.ion.ucl.ac.uk/spm/. The simulations in this letter can be repro-
duced (and customized) via a graphical user interface by typing >> DEM
and selecting the appropriate (T-maze or Navigation) demo.

Acknowledgments

K.J.F. was funded by the Wellcome Trust (088130/Z/09/Z). L.D. is sup-
ported by the Fonds National de la Recherche, Luxembourg (13568875).
C.H. was funded by a Research Talent Grant (406.18.535) of the Netherlands
Organisation for Scientific Research. We have no disclosures or conflicts of
interest.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf by U
niversity C

ollege London user on 21 M
arch 2021

http://www.fil.ion.ucl.ac.uk/spm/


758 K. Friston et al.

References

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2), 251–276. doi:10.1162/089976698300017746
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