169 research outputs found

    Mice lacking neutral amino acid transporter B⁰AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control

    No full text
    OBJECTIVE: Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B⁰AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. METHODS: Metabolic tests, analysis of metabolite levels and signalling pathways were used to characterise mice lacking the intestinal and renal neutral amino acid transporter B⁰AT1 (Slc6a19). RESULTS: Reduced uptake of neutral amino acids in the intestine and loss of neutral amino acids in the urine causes an overload of amino acids in the lumen of the intestine and reduced systemic amino acid availability. As a result, higher levels of glucagon-like peptide 1 (GLP-1) are produced by the intestine after a meal, while the liver releases the starvation hormone fibroblast growth factor 21 (FGF21). The combination of these hormones generates a metabolic phenotype that is characterised by efficient removal of glucose, particularly by the heart, reduced adipose tissue mass, browning of subcutaneous white adipose tissue, enhanced production of ketone bodies and reduced hepatic glucose output. CONCLUSIONS: Reduced neutral amino acid availability improves glycaemic control. The epithelial neutral amino acid transporter B⁰AT1 could be a suitable target to treat type 2 diabetes.This work was supported by a sponsored research agreement with Sanofi-Aventis, Germany

    Development of a peptide drug restoring AMPK and adipose tissue functionality in cancer cachexia

    Get PDF
    Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia

    Directing the Aggregation of Native Polythiophene during in Situ Polymerization

    Get PDF
    The performance of semiconducting polymers strongly depends on their intra- and intermolecular electronic interactions. Therefore, the morphology and particularly crystallinity and crystal structure play a crucial role in enabling a sufficient overlap between the orbitals of neighboring polymers. A new solution-based in situ polymerization for the fabrication of native polythiophene thin films is presented, which exploits the film formation process to influence the polymer crystal structure in the resulting thin films. The synthesis of the insoluble polythiophene is based on an oxidative reaction in which the oxidizing agent, iron(III) p-toluenesulfonate (FeTos), initially oxidizes the monomers to enable the polymer chain growth and secondly the final polymers, thereby chemically doping the polythiophene. To exploit the fact that the doped polythiophene has a different crystal packing structure compared to the undoped polythiophene, we investigate the structural effect of this inherent doping process by varying the amounts of FeTos in the reaction mixture, creating polythiophene thin films with different degrees of doping. The structural investigation performed by means of grazing incidence wide-angle X-ray scattering (GIWAXS) suggests that the strongly doped polymer chains aggregate in a ππ-stacked manner in the film formation process. Moreover, this π-stacking can be maintained after the removal of the dopant molecules. GIWAXS measurements, molecular dynamics simulations, and spectroscopic analysis suggest the presence of polythiophene in a novel and stable crystal structure with an enhanced intermolecular interaction

    Zoonotic pathogen screening of striped field mice (Apodemus agrarius) from Austria

    Get PDF
    The striped field mouse (Apodemus agrarius) is known to carry several zoonotic pathogens, including Leptospira spp. and Dobrava-Belgrade orthohantavirus (DOBV). Since its first detection in 1996 in south-east Austria, the striped field mouse has further expanded its range in Austria. Here, we screened 35 striped field mice collected in an Austrian region near the Hungarian border for DOBV, Leptospira spp. and seven vector-borne pathogens. Hantavirus RT-PCR screening and DOBV IgG ELISA analysis led to the detection of two DOBV-positive striped field mice. The complete coding sequences of all three genome segments of both strains were determined by a combination of target enrichment and next-generation sequencing. Both complete coding S segment sequences clustered within the DOBV genotype Kurkino clade with the highest similarity to a sequence from Hungary. In one of 35 striped field mice, Leptospira borgpetersenii sequence type (ST) 146 was detected. Bartonella spp., Borrelia miyamotoi and Neoehrlichia mikurensis DNA was detected in four, one and two of 32 mice, respectively. Babesia, Anaplasma, Ehrlichia and Rickettsia specific DNA was not detected. Future investigations will have to determine the prevalence and invasion of these pathogens with the ongoing range expansion of the striped field mouse in Austria

    Zoonotic pathogen screening of striped field mice (Apodemus agrarius) from Austria

    Get PDF
    The striped field mouse (Apodemus agrarius) is known to carry several zoonotic pathogens, including Leptospira spp. and Dobrava–Belgrade orthohantavirus (DOBV). Since its first detection in 1996 in south-east Austria, the striped field mouse has further expanded its range in Austria. Here, we screened 35 striped field mice collected in an Austrian region near the Hungarian border for DOBV, Leptospira spp. and seven vector-borne pathogens. Hantavirus RT-PCR screening and DOBV IgG ELISA analysis led to the detection of two DOBV-positive striped field mice. The complete coding sequences of all three genome segments of both strains were determined by a combination of target enrichment and next-generation sequencing. Both complete coding S segment sequences clustered within the DOBV genotype Kurkino clade with the highest similarity to a sequence from Hungary. In one of 35 striped field mice, Leptospira borgpetersenii sequence type (ST) 146 was detected. Bartonella spp., Borrelia miyamotoi and Neoehrlichia mikurensis DNA was detected in four, one and t wo of 32 mice, respectively. Babesia, Anaplasma, Ehrlichia and Rickettsia specific DNA was not detected. Future investigations will have to determine the prevalence and invasion of these pathogens with the ongoing range expansion of the striped field mouse in Austria

    PPP2R5C couples hepatic glucose and lipid homeostasis

    Get PDF
    In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state

    The obesity‐linked human lncRNA AATBC stimulates mitochondrial function in adipocytes

    Get PDF
    Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity‐associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human‐specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity‐linked regulator of adipocyte plasticity and mitochondrial function in humans

    Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL

    Get PDF
    Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes
    corecore