587 research outputs found
The regulation of CD5 expression in murine T cells
BACKGROUND: CD5 is a pan-T cell surface marker that is also present on a subset of B cells, B-1a cells.Functional and developmental subsets of T cells express characteristic CD5 levels that vary over roughly a 30-fold range. Previous investigators have cloned a 1.7 Kb fragment containing the CD5 promoter and showed that it can confer similar lymphocyte-specific expression pattern as observed for endogenous CD5 expression. RESULTS: We further characterize the CD5 promoter and identify minimal and regulatory regions on the CD5 promoter. Using a luciferase reporter system, we show that a 43 bp region on the CD5 promoter regulates CD5 expression in resting mouse thymoma EL4 T cells and that an Ets binding site within the 43 bp region mediates the CD5 expression. In addition, we show that Ets-1, a member of the Ets family of transcription factors, recognizes the Ets binding site in the electrophoretic mobility shift assay (EMSA). This Ets binding site is directly responsible for the increase in reporter activity when co-transfected with increasing amounts of Ets-1 expression plasmid. We also identify two additional evolutionarily-conserved regions in the CD5 promoter (CD5X and CD5Y) and demonstrate the respective roles of the each region in the regulation of CD5 transcription. CONCLUSION: Our studies define a minimal and regulatory promoter for CD5 and show that the CD5 expression level in T cells is at least partially dependent on the level of Ets-1 protein. Based on the findings in this report, we propose a model of CD5 transcriptional regulation in T cells
Cell sorting in a Petri dish controlled by computer vision.
Fluorescence-activated cell sorting (FACS) applying flow
cytometry to separate cells on a molecular basis is a widespread
method. We demonstrate that both fluorescent and unlabeled live
cells in a Petri dish observed with a microscope can be
automatically recognized by computer vision and picked up by a
computer-controlled micropipette. This method can be routinely
applied as a FACS down to the single cell level with a very
high selectivity. Sorting resolution, i.e., the minimum distance
between two cells from which one could be selectively removed
was 50-70 micrometers. Survival rate with a low number of 3T3
mouse fibroblasts and NE-4C neuroectodermal mouse stem cells was
66 +/- 12% and 88 +/- 16%, respectively. Purity of sorted
cultures and rate of survival using NE-4C/NE-GFP-4C co-cultures
were 95 +/- 2% and 62 +/- 7%, respectively. Hydrodynamic
simulations confirmed the experimental sorting efficiency and a
cell damage risk similar to that of normal FACS
Digital pathology evaluation of complement C4d component deposition in the kidney allograft biopsies is a useful tool to improve reproducibility of the scoring
Complement C4d component deposition in kidney allograft biopsies is an established marker of antibody-mediated rejection. In the Banff 07 classification of renal allograft pathology, semi-quantitative evaluation of the proportion of C4d-positive peritubular capilaries (PTC) is used. We aimed to explore the potential of digital pathology tools to obtain quantitative and reproducible measure of C4d deposition in the renal allograft tissue
Chandrasekhar-Kendall functions in astrophysical dynamos
Some of the contributions of Chandrasekhar to the field of
magnetohydrodynamics are highlighted. Particular emphasis is placed on the
Chandrasekhar-Kendall functions that allow a decomposition of a vector field
into right- and left-handed contributions. Magnetic energy spectra of both
contributions are shown for a new set of helically forced simulations at
resolutions higher than what has been available so far. For a forcing function
with positive helicity, these simulations show a forward cascade of the
right-handed contributions to the magnetic field and nonlocal inverse transfer
for the left-handed contributions. The speed of inverse transfer is shown to
decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary
Conference, to be published in PRAMANA - Journal of Physic
Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion
Non-classical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of non-classical secretion. We have recently shown that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as LPS or TNF-α. The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms as has been postulated for the inflammatory mediators IL-1β and HMGB1. We show here that circulating Prdx1 and 2 are present exclusively as disulphide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α and this release can be induced with an oxidant. In contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway; instead, both Prdx1 and 2 are released in exosomes from both HEK cells and monocytic cells. Serum Prdx1 and 2 are also associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signalling mechanisms in inflammation
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
Development of B Cells and Erythrocytes Is Specifically Impaired by the Drug Celastrol in Mice
Background: Celastrol, an active compound extracted from the root of the Chinese medicine ‘‘Thunder of God Vine’’ (Tripterygium wilfordii), exhibits anticancer, antioxidant and anti-inflammatory activities, and interest in the therapeutic potential of celastrol is increasing. However, described side effects following treatment are significant and require investigation prior to initiating clinical trials. Here, we investigated the effects of celastrol on the adult murine hematopoietic system. Methodology/Principal Findings: Animals were treated daily with celastrol over a four-day period and peripheral blood, bone marrow, spleen, and peritoneal cavity were harvested for cell phenotyping. Treated mice showed specific impairment of the development of B cells and erythrocytes in all tested organs. In bone marrow, these alterations were accompanied by decreases in populations of common lymphoid progenitors (CLP), common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP). Conclusions/Significance: These results indicate that celastrol acts through regulators of adult hematopoiesis and could be used as a modulator of the hematopoietic system. These observations provide valuable information for further assessmen
Thymic Alterations in GM2 Gangliosidoses Model Mice
BACKGROUND: Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids. We have previously found that the progressive neurologic disease induced in Hexb(-/-) mice, an animal model for Sandhoff disease, is associated with the production of pathogenic anti-glycolipid autoantibodies. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we report on the alterations in the thymus during the development of mild to severe progressive neurologic disease. The thymus from Hexb(-/-) mice of greater than 15 weeks of age showed a marked decrease in the percentage of immature CD4(+)/CD8(+) T cells and a significantly increased number of CD4(+)/CD8(-) T cells. During involution, the levels of both apoptotic thymic cells and IgG deposits to T cells were found to have increased, whilst swollen macrophages were prominently observed, particularly in the cortex. We employed cDNA microarray analysis to monitor gene expression during the involution process and found that genes associated with the immune responses were upregulated, particularly those expressed in macrophages. CXCL13 was one of these upregulated genes and is expressed specifically in the thymus. B1 cells were also found to have increased in the thy mus. It is significant that these alterations in the thymus were reduced in FcRγ additionally disrupted Hexb(-/-) mice. CONCLUSIONS/SIGNIFICANCE: These results suggest that the FcRγ chain may render the usually poorly immunogenic thymus into an organ prone to autoimmune responses, including the chemotaxis of B1 cells toward CXCL13
Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions
- …