27 research outputs found

    First observation of scissors mode states in an odd-mass nucleus

    Get PDF
    Nuclear resonance fluorescence experiments are reported to search for enhanced M1 scissors mode states in the deformed odd-mass nucleus Dy163. A concentration of dipole strengths near 3 MeV excitation energy is found, which fits nicely into the systematics observed for M1 excitations in the neighboring even-even Dy isotopes. The observed strength distribution and the decay branching ratios are discussed in the context of the interacting boson-fermion model.Dirección General de Investigación Científica y Técnica PB89-063

    Lifetime measurements of excited states in ¹⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2⁺ → 17/2⁺)/B(E2:17/2⁺ → 13/2⁺) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed

    In-beam spectroscopy of the heaviest elements

    Get PDF
    In-beam spectroscopy provides many powerful tools for the detailed study of nuclear structure. Over the past two decades the coupling of sensitive in-beam spectrometers to recoil separators has allowed the study of weakly populated reaction channels, such as the fusion-evaporation reactions leading to nuclei beyond fermium (Z = 100). The methods, observables, and limitations of this approach are discussed

    Public Awareness of Nuclear Science (PANS)

    No full text

    Heaviest Elements: Decay and Laser Spectroscopy

    No full text

    A Geant4 simulation package for the SAGE spectrometer

    No full text
    A comprehensive Geant4 simulation was built for the sage spectrometer. The simulation package includes the silicon and germanium detectors, the mechanical structure and the electromagnetic fields present in sage. This simulation can be used for making predictions through simulating experiments and for comparing simulated and experimental data to better understand the underlying physics.peerReviewe

    The SPEDE Spectrometer: Combined In-Beam γ-ray and Conversion Electron Spectroscopy with Radioactive Ion Beams

    No full text
    The SPEDE conversion electron spectrometer will be combined with the Miniball germanium detector array for combined in-beam electron and γ-ray spectroscopy with radioactive ion beams. SPEDE will be primarily employed in Coulomb excitation experiments at HIE-ISOLDE, CERN.status: publishe
    corecore