10 research outputs found

    Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines - A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters

    Get PDF
    With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point

    Get PDF
    Contains fulltext : 154418.pdf (publisher's version ) (Open Access)Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or 'set point', that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo

    Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines—A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters

    No full text
    With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design
    corecore