114 research outputs found

    Tilted two-fluid Bianchi type I models

    Full text link
    In this paper we investigate expanding Bianchi type I models with two tilted fluids with the same linear equation of state, characterized by the equation of state parameter w. Individually the fluids have non-zero energy fluxes w.r.t. the symmetry surfaces, but these cancel each other because of the Codazzi constraint. We prove that when w=0 the model isotropizes to the future. Using numerical simulations and a linear analysis we also find the asymptotic states of models with w>0. We find that future isotropization occurs if and only if w1/3w \leq 1/3. The results are compared to similar models investigated previously where the two fluids have different equation of state parameters.Comment: 14 pages, 3 figure

    All metrics have curvature tensors characterised by its invariants as a limit: the \epsilon-property

    Get PDF
    We prove a generalisation of the ϵ\epsilon-property, namely that for any dimension and signature, a metric which is not characterised by its polynomial scalar curvature invariants, there is a frame such that the components of the curvature tensors can be arbitrary close to a certain "background". This "background" is defined by its curvature tensors: it is characterised by its curvature tensors and has the same polynomial curvature invariants as the original metric.Comment: 6 page

    Fluid observers and tilting cosmology

    Get PDF
    We study perfect fluid cosmological models with a constant equation of state parameter γ\gamma in which there are two naturally defined time-like congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e., γ>4/3\gamma>4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e., γ<4/3\gamma < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant

    A spacetime not characterised by its invariants is of aligned type II

    Get PDF
    By using invariant theory we show that a (higher-dimensional) Lorentzian metric that is not characterised by its invariants must be of aligned type II; i.e., there exists a frame such that all the curvature tensors are simultaneously of type II. This implies, using the boost-weight decomposition, that for such a metric there exists a frame such that all positive boost-weight components are zero. Indeed, we show a more general result, namely that any set of tensors which is not characterised by its invariants, must be of aligned type II. This result enables us to prove a number of related results, among them the algebraic VSI conjecture.Comment: 14pages, CQG to appea

    Essential Constants for Spatially Homogeneous Ricci-flat manifolds of dimension 4+1

    Full text link
    The present work considers (4+1)-dimensional spatially homogeneous vacuum cosmological models. Exact solutions -- some already existing in the literature, and others believed to be new -- are exhibited. Some of them are the most general for the corresponding Lie group with which each homogeneous slice is endowed, and some others are quite general. The characterization ``general'' is given based on the counting of the essential constants, the line-element of each model must contain; indeed, this is the basic contribution of the work. We give two different ways of calculating the number of essential constants for the simply transitive spatially homogeneous (4+1)-dimensional models. The first uses the initial value theorem; the second uses, through Peano's theorem, the so-called time-dependent automorphism inducing diffeomorphismsComment: 26 Pages, 2 Tables, latex2

    Quantum creation of an Inhomogeneous universe

    Get PDF
    In this paper we study a class of inhomogeneous cosmological models which is a modified version of what is usually called the Lema\^itre-Tolman model. We assume that we have a space with 2-dimensional locally homogeneous spacelike surfaces. In addition we assume they are compact. Classically we investigate both homogeneous and inhomogeneous spacetimes which this model describe. For instance one is a quotient of the AdS4_4 space which resembles the BTZ black hole in AdS3_3. Due to the complexity of the model we indicate a simpler model which can be quantized easily. This model still has the feature that it is in general inhomogeneous. How this model could describe a spontaneous creation of a universe through a tunneling event is emphasized.Comment: 21 pages, 5 ps figures, REVTeX, new subsection include

    Solvegeometry gravitational waves

    Full text link
    In this paper we construct negatively curved Einstein spaces describing gravitational waves having a solvegeometry wave-front (i.e., the wave-fronts are solvable Lie groups equipped with a left-invariant metric). Using the Einstein solvmanifolds (i.e., solvable Lie groups considered as manifolds) constructed in a previous paper as a starting point, we show that there also exist solvegeometry gravitational waves. Some geometric aspects are discussed and examples of spacetimes having additional symmetries are given, for example, spacetimes generalising the Kaigorodov solution. The solvegeometry gravitational waves are also examples of spacetimes which are indistinguishable by considering the scalar curvature invariants alone.Comment: 10 pages; v2:more discussion and result
    corecore