30 research outputs found

    Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    Get PDF
    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases

    Effects of histone deacetylase inhibitor FR901228 on expression level of telomerase reverse transcriptase in oral cancer

    Get PDF
    We speculated whether or not the expression level of telomerase reverse transcriptase (hTERT) would be modulated by agents targeting epigenetics in oral cancer cell lines. Although hTERT is known to be targeted by epigenetic changes, it remains unclear how chemoagents targeting epigenetics work on hTERT transcription. In the present study, the epigenetic effects of histone deacetylase (HDAC) inhibitor FR901228 on hTERT transcription were analysed by RT-PCR in oral cancer cell lines. The mRNA expression of hTERT was upregulated after exposure to FR901228 in hTERT-negative Hep2 cells, even in the hTERT highly expressed SAS and KB cells. Moreover, co-treatment of protein synthesis inhibitor cycloheximide (CHX) resulted in the induction of hTERT transcription by FR901228. This suggests that the induction of hTERT by FR901228 requires de novo protein synthesis to some extent and is more likely a direct than an indirect effect on epigenetic changes such as histone acetylation / deacetylation. We further examined the effect of FR901228 on c-myc protein, which is one of the main hTERT transcription activators. FR901228 repressed c-myc protein only in the absence of CHX, dependent of the enhancement of de novo protein synthesis. Our results indicate that c-myc protein is repressed indirectly by FR901228 but may not contribute FR901228-induced hTERT transcription. The present study showed that the HDAC inhibitor FR901228 induced the hTERT gene by a complex mechanism that involved other transcription factors except for c-myc, in addition to the inhibition of histone deacetylation

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    MC-PPEA as a new and more potent inhibitor of CLP-induced sepsis and pulmonary inflammation than FK866

    No full text
    Peixin Huang,1 Mark W Lee Jr,2 Keivan Sadrerafi,2 Daniel P Heruth,1 Li Q Zhang,1 Dev Maulik,3,4 Shui Qing Ye1,4 1Division of Experimental and Translational Genetics, Department of Pediatrics, The Children’s Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City, 2Department of Chemistry, University of Missouri, Columbia, MO, 3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, 4Department of Obstetrics and Gynecology, Truman Medical Center, Kansas City, MO, USA Abstract: Our previous study indicated that overexpression of nicotinamide phosphoribosyltransferase (NAMPT) aggravated acute lung injury, while knockdown of NAMPT expression attenuated ventilator-induced lung injury. Recently, we found that meta-carborane-butyl-3-(3-pyridinyl)-2E-propenamide (MC-PPEA, MC4), in which the benzoylpiperidine moiety of FK866 has been replaced by a carborane, displayed a 100-fold increase in NAMPT inhibition over FK866. Here, we determined the effects of MC4 and FK866 on cecal ligation and puncture (CLP) surgery-induced sepsis in C57BL/6J mice. MC4 showed stronger inhibitory effects than FK866 on CLP-induced mortality, serum tumor necrosis factor α (TNFα) levels, pulmonary myeloperoxidase activity, alveolar injury, and interleukin 6 and interleukin1β messenger RNA levels. In vitro cell permeability and electric cell–substrate impedance sensing assays demonstrated that MC4 inhibited TNFα- and thrombin-mediated pulmonary endothelial cell permeability better than FK866. MC4 also exerted more potent effects than FK866, at concentrations as low as 0.3 nM, to attenuate TNFα-mediated intracellular cytokine expression, nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH levels, and nuclear factor kappa B p65 phosphorylation and nuclear translocation in A549 cells. Our results strongly suggest that the newly developed MC4 is a more potent suppressor of CLP-induced pulmonary inflammation and sepsis than FK866, with potential clinical application as a new treatment agent for sepsis and inflammation. Keywords: NAMPT, pulmonary inflammation, sepsi

    Interleukin-1β converting enzyme subfamily inhibitors prevent induction of CD86 molecules by butyrate through a CREB-dependent mechanism in HL60 cells

    No full text
    To investigate the underlying mechanism for induction of CD86 molecules, we analysed the ability of the histone deacetylase (HDAC) inhibitor, sodium butyrate (NaB), to induce CD86 at the transcriptional level in HL60 cells. Our studies showed that the expression of CD86 on the cell surface was increased by 24 hr of NaB treatment, and the enhancement of CD86 mRNA expression was observed by real-time polymerase chain reaction. When we measured NF-κB binding activity, significant activity was induced upon NaB stimulation, which was suppressed by the addition of pyrrolidine dithiocarbamate. Butyrate also induced phosphorylated cAMP response element-binding protein (CREB), which bound to cAMP-responsive elements. Dibutyryl (db) -cAMP induced active CREB and increased the levels of CD86 by 24 hr. These observations indicated that NF-κB and/or CREB are crucial for butyrate-dependent activation of CD86 gene expression. We examined the inhibitory effects of various caspase inhibitors on the expression of CD86 in cells treated with NaB, because NaB also induced apoptosis with slow kinetics. Intriguingly, our results demonstrated that inhibitors of the interleukin-1β converting enzyme subfamily (caspase-1, -4, -5 and -13) blocked the butyrate-induced increase in level of CD86. These inhibitors interfered with CD86 gene transcription in the presence of activated NF-κB, whereas phosphorylated CREB was down-regulated in the reactions where these inhibitors were added to inhibit CD86 gene expression. These results suggested that butyrate not only acetylates histones on the CD86 promoter through the suppression of HDAC activity, but that butyrate also regulates CREB-mediated transcription, possibly through the caspase activities triggered by NaB
    corecore