37 research outputs found

    Holistic view on health : two protective layers of biodiversity

    Get PDF
    The western world has witnessed a rising epidemic of chronic inflammatory disorders, such as allergies and asthma. This epidemic is expected to spread also to the rest of the world, where allergies have to date been practically absent, along with adoption of western lifestyle. In parallel, biological diversity is globally declining. This inspired Ilkka Hanski, together with medical doctors, to formulate the biodiversity hypothesis of allergic disease. This hypothesis proposes that reduced contact with natural environments, including natural microbial diversity, is associated with unhealthy human microbiota, less able to educate the immune system. Contact with beneficial bacteria, particularly early in life, seems to be instrumental to the normal development of immune responses. Changes in lifestyle and diet, destruction of natural environments, and urbanisation threaten our natural exposure to these beneficial bacteria and thus also reduce their impact on our physiology. To ensure a healthy life, we need to preserve biodiversity in the environment and make sure it finds a favourable home in us. In this review, we will focus on the role of commensal microbiota in human health and wellbeing, as well as the interaction between our microbiota and environmental microbiota, highlighting the contribution of Ilkka Hanski.Peer reviewe

    Patterns in the skin microbiota differ in children and teenagers between rural and urban environments

    Get PDF
    The composition of human microbiota is affected by a multitude of factors. Understanding the dynamics of our microbial communities is important for promoting human health because microbiota has a crucial role in the development of inflammatory diseases, such as allergies. We have studied the skin microbiota of both arms in 275 Finnish children of few months old to teenagers living in contrasting environments. We show that while age is a major factor affecting skin microbial composition, the living environment also discriminates the skin microbiota of rural and urban children. The effect of environment is age-specific; it is most prominent in toddlers but weaker for newborns and non-existent for teenagers. Within-individual variation is also related to age and environment. Surprisingly, variation between arms is smaller in rural subjects in all age groups, except in teenagers. We also collected serum samples from children for characterization of allergic sensitization and found a weak, but significant association between allergic sensitization and microbial composition. We suggest that physiological and behavioral changes, related to age and the amount of contact with environmental microbiota, jointly influence the dynamics of the skin microbiota, and explain why the association between the living environment skin microbiota is lost in teenager.Peer reviewe

    Common environmental chemicals do not explain atopy contrast in the Finnish and Russian Karelia

    Get PDF
    Background: Atopic allergy is much more common in Finnish compared with Russian Karelia, although these areas are geographically and genetically close. To explore the role of environmental chemicals on the atopy difference a random sample of 200 individuals, 25 atopic and 25 non-atopic school-aged children and their mothers, were studied. Atopy was defined as having at least one positive skin prick test response to 14 common inhalant and food allergens tested. Concentrations of 11 common environmental pollutants were measured in blood samples. Results: Overall, the chemical levels were much higher in Russia than in Finland, except for 2,2', 4,4'-tetra-bromodiphenyl ether (BDE47). In Finland but not in Russia, the atopic children had higher concentrations of polychlorinated biphenyls and 1,1-Dichloro-2,2-bis-(p-chlorophenyl)-ethylene (DDE) than the non-atopic children. In Russia but not in Finland, the atopic mothers had higher DDE concentrations than the non-atopic mothers. Conclusions: Higher concentrations of common environmental chemicals were measured in Russian compared with Finnish Karelian children and mothers. The chemicals did not explain the higher prevalence of atopy on the Finnish side.Peer reviewe

    Contrasting microbiotas between Finnish and Estonian infants : exposure to Acinetobacter may contribute to the allergy gap

    Get PDF
    Background Allergic diseases are more common in Finland than in Estonia, which-according to the biodiversity hypothesis-could relate to differences in early microbial exposures. Methods We aimed at defining possible microbial perturbations preceding early atopic sensitization. Stool, nasal and skin samples of 6-month-old DIABIMMUNE study participants with HLA susceptibility to type 1 diabetes were collected. We compared microbiotas of sensitized (determined by specific IgE results at 18 months of age) and unsensitized Estonian and Finnish children. Results Sensitization was differentially targeted between populations, as egg-specific and birch pollen-specific IgE was more common in Finland. Microbial diversity and community composition also differed; the genusAcinetobacterwas more abundant in Estonian skin and nasal samples. Particularly, the strain-level profile ofAcinetobacter lwoffiiwas more diverse in Estonian samples. Early microbiota was not generally associated with later sensitization. Microbial composition tended to differ between children with or without IgE-related sensitization, but only in Finland. While land-use pattern (ie green areas vs. urban landscapes around the children's homes) was not associated with microbiota as a whole, it associated with the composition of the genusAcinetobacter. Breastfeeding affected gut microbial composition and seemed to protect from sensitization. Conclusions In accordance with the biodiversity hypothesis, our results support disparate early exposure to environmental microbes between Finnish and Estonian children and suggest a significant role of the genusAcinetobacterin the allergy gap between the two populations. The significance of the observed differences for later allergic sensitization remains open.Peer reviewe

    Maternal Genetic Variants of IL4/IL13 Pathway Genes on IgE With “Western or Eastern Environments/Lifestyles”

    Get PDF
    Purpose: We investigated maternal genetic effects of four IL-4/IL-13 pathway genes as well as their interactions with the "Western or Eastern lifestyles/environments" on IgE in Karelian children. Methods: This study included 609 children and their mothers. Total IgE levels in children and mothers were measured and 10 single nucleotide polymorphisms (SNPs) in IL-4, IL-4Ra, IL-13, and STAT6 were genotyped in mothers and their children. Results: The maternal G allele of IL-13 130 (rs20541) was significantly (P=0.001) associated with decreased IgE in children in the Karelian population (Pooling Finnish and Russian children), as well as in Finnish (P=0.030) and Russian children (P=0.018). The IgE levels were significantly (P=0.001) higher in Russian children whose mothers were homozygous for the G allele of the IL-4Ra 50 (rs1805010) SNP than that in Russian children of mothers who were AG heterozygotes or AA homozygotes. After accounting for children's genotypes, we observed interactive effects on children's IgE for maternal IL-13 130 genotypes (P=0.014) and maternal IL-4Ra 50 genotypes (P=0.0003) with "Western or Eastern" lifestyles/environments. With the adjustment for multiple comparisons using a false discovery rate (FDR) of 0.05, the interactive effect of the maternal IL-4Ra50 SNP was significant. Conclusion: Maternal genetic variants in IL-4/IL-13 pathway genes, such as IL-13 130 and IL-4Ra50, influenced IgE levels in school children that were independent of the children's genetic effects. These effects differ in "Western or Eastern" environments

    Immune-microbiota interaction in Finnish and Russian Karelia young people with high and low allergy prevalence

    Get PDF
    Background After the Second World War, the population living in the Karelian region was strictly divided by the "iron curtain" between Finland and Russia. This resulted in different lifestyle, standard of living, and exposure to the environment. Allergic manifestations and sensitization to common allergens have been much more common on the Finnish compared to the Russian side. Objective The remarkable allergy disparity in the Finnish and Russian Karelia calls for immunological explanations. Methods Young people, aged 15-20 years, in the Finnish (n = 69) and Russian (n = 75) Karelia were studied. The impact of genetic variation on the phenotype was studied by a genome-wide association analysis. Differences in gene expression (transcriptome) were explored from the blood mononuclear cells (PBMC) and related to skin and nasal epithelium microbiota and sensitization. Results The genotype differences between the Finnish and Russian populations did not explain the allergy gap. The network of gene expression and skin and nasal microbiota was richer and more diverse in the Russian subjects. When the function of 261 differentially expressed genes was explored, innate immunity pathways were suppressed among Russians compared to Finns. Differences in the gene expression paralleled the microbiota disparity. High Acinetobacter abundance in Russians correlated with suppression of innate immune response. High-total IgE was associated with enhanced anti-viral response in the Finnish but not in the Russian subjects. Conclusions and clinical relevance Young populations living in the Finnish and Russian Karelia show marked differences in genome-wide gene expression and host contrasting skin and nasal epithelium microbiota. The rich gene-microbe network in Russians seems to result in a better-balanced innate immunity and associates with low allergy prevalence.Peer reviewe
    corecore