3,503 research outputs found

    Comparison of satellite theories

    Get PDF
    The accuracy of five mathematical models in computing a nominal orbit for the Vanguard 2 satellite by using a position velocity vector is considered. Either numerical integration or analytical theories are used in all models as well as the same force model that corresponds to a potential with the zonal harmonics to order four. The amounts of spread in the values of the total energy and the z-component of the angular momentum for a set of times are considered as measures of accuracy

    A computer program version of the Brouwer orbital theory with optional modifications

    Get PDF
    Computer program for calculating osculating values of Keplerian elements of satellite orbi

    Collision of One-Dimensional Nonlinear Chains

    Full text link
    We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient of restitution (COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions using perturbation methods. We found that the velocity dependence is characterized by the exponent of the lowest unharmonic term of interparticle potential energy

    Scaling properties of granular materials

    Full text link
    Given an assembly of viscoelastic spheres with certain material properties, we raise the question how the macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size etc., are scaled by a constant. The result leads to a method to scale down experiments to lab-size.Comment: 4 pages, 2 figure

    Absence of a consistent classical equation of motion for a mass-renormalized point charge

    Full text link
    The restrictions of analyticity, relativistic (Born) rigidity, and negligible O(a) terms involved in the evaluation of the self electromagnetic force on an extended charged sphere of radius "a" are explicitly revealed and taken into account in order to obtain a classical equation of motion of the extended charge that is both causal and conserves momentum-energy. Because the power-series expansion used in the evaluation of the self force becomes invalid during transition time intervals immediately following the application and termination of an otherwise analytic externally applied force, transition forces must be included during these transition time intervals to remove the noncausal pre-acceleration and pre-deceleration from the solutions to the equation of motion without the transition forces. For the extended charged sphere, the transition forces can be chosen to maintain conservation of momentum-energy in the causal solutions to the equation of motion within the restrictions of relativistic rigidity and negligible O(a) terms under which the equation of motion is derived. However, it is shown that renormalization of the electrostatic mass to a finite value as the radius of the charge approaches zero introduces a violation of momentum-energy conservation into the causal solutions to the equation of motion of the point charge if the magnitude of the external force becomes too large. That is, the causal classical equation of motion of a point charge with renormalized mass experiences a high acceleration catastrophe.Comment: 13 pages, No figure

    A Hierarchically-Organized Phase Diagram near a Quantum Critical Point in URu2Si2

    Get PDF
    A comprehensive transport study, as a function of both temperature and magnetic field in continuous magnetic fields up to 45 T reveals that URu2Si2 possesses all the essential hallmarks of quantum criticality at temperatures above 5.5 K and fields around 38 T, but then collapses into multiple low temperature phases in a hierarchically-organized phase diagram as the temperature is reduced. Although certain generic features of the phase diagram are very similar to those in the cuprates and heavy fermion superconductors, the existence of multiple ordered hysteretic phases near the field-tuned quantum critical point is presently unique to URu2Si2. This finding suggests the existence of many competing order parameters separated by small energy difference in URu2Si2.Comment: 6 pages, twocolum texts, 3 coloured figure included, submitted to PR

    On the Stability of the Mean-Field Glass Broken Phase under Non-Hamiltonian Perturbations

    Get PDF
    We study the dynamics of the SK model modified by a small non-hamiltonian perturbation. We study aging, and we find that on the time scales investigated by our numerical simulations it survives a small perturbation (and is destroyed by a large one). If we assume we are observing a transient behavior the scaling of correlation times versus the asymmetry strength is not compatible with the one expected for the spherical model. We discuss the slow power law decay of observable quantities to equilibrium, and we show that for small perturbations power like decay is preserved. We also discuss the asymptotically large time region on small lattices.Comment: 34 page

    Microcanonical quantum fluctuation theorems

    Full text link
    Previously derived expressions for the characteristic function of work performed on a quantum system by a classical external force are generalized to arbitrary initial states of the considered system and to Hamiltonians with degenerate spectra. In the particular case of microcanonical initial states explicit expressions for the characteristic function and the corresponding probability density of work are formulated. Their classical limit as well as their relations to the respective canonical expressions are discussed. A fluctuation theorem is derived that expresses the ratio of probabilities of work for a process and its time reversal to the ratio of densities of states of the microcanonical equilibrium systems with corresponding initial and final Hamiltonians.From this Crooks-type fluctuation theorem a relation between entropies of different systems can be derived which does not involve the time reversed process. This entropy-from-work theorem provides an experimentally accessible way to measure entropies.Comment: revised and extended versio

    Thermodynamic picture of the glassy state

    Full text link
    A picture for thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second part, the approach connects the response of macroscopic observables to a field change with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized non-equilibrium way.Comment: Proceedings of the Conference "Unifying Concepts in Glass Physics", ICTP, Trieste, 15 - 18 September 199

    Mean-field theory for a spin-glass model of neural networks: TAP free energy and paramagnetic to spin-glass transition

    Full text link
    An approach is proposed to the Hopfield model where the mean-field treatment is made for a given set of stored patterns (sample) and then the statistical average over samples is taken. This corresponds to the approach made by Thouless, Anderson and Palmer (TAP) to the infinite-range model of spin glasses. Taking into account the fact that in the Hopfield model there exist correlations between different elements of the interaction matrix, we obtain its TAP free energy explicitly, which consists of a series of terms exhibiting the cluster effect. Nature of the spin-glass transition in the model is also examined and compared with those given by the replica method as well as the cavity method.Comment: 12 pages, LaTex, 1 PostScript figur
    corecore