4,953 research outputs found

    A Serendipitous XMM-Newton Observation of the Intermediate Polar WX Pyx

    Full text link
    We briefly describe a serendipitous observation of the little-studied intermediate polar WX Pyx using XMM-Newton. The X-ray spin period is 1557.3 sec, confirming the optical period published in 1996. An orbital period of approximately 5.54 hr is inferred from the separation of the spin-orbit sidelobe components. The soft and hard band spin-folded light curves are nearly sinusoidal in shape. The best-fit spectrum is consistent with a bremsstrahlung temperature of about 18 keV. An upper limit of approximately 300 eV is assigned to the presence of Fe line emission. WX Pyx lies near TX and TV Col in the P_spin-P_orb plane.Comment: 5 pages, 5 figs; accepted A&A 2004 Dec

    A Hardware Implementation of Artificial Neural Network Using Field Programmable Gate Arrays

    Get PDF
    An artificial neural network algorithm is implemented using a field programmable gate array hardware. One hidden layer is used in the feed-forward neural network structure in order to discriminate one class of patterns from the other class in real time. With five 8-bit input patterns, six hidden nodes, and one 8-bit output, the implemented hardware neural network makes decision on a set of input patterns in 11 clocks and the result is identical to what to expect from off-line computation. This implementation may be used in level 1 hardware triggers in high energy physics experimentsComment: 13 pages, 4 figures, submitted to Nucl. Instr. Meth.

    Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses

    Full text link
    We show that a linear molecule subjected to a short specific elliptically polarized laser field yields postpulse revivals exhibiting alignment alternatively located along the orthogonal axis and the major axis of the ellipse. The effect is experimentally demonstrated by measuring the optical Kerr effect along two different axes. The conditions ensuring an optimal field-free alternation of high alignments along both directions are derived.Comment: 5 pages, 4 color figure

    On the work distribution for the adiabatic compression of a dilute classical gas

    Get PDF
    We consider the adiabatic and quasi-static compression of a dilute classical gas, confined in a piston and initially equilibrated with a heat bath. We find that the work performed during this process is described statistically by a gamma distribution. We use this result to show that the model satisfies the non-equilibrium work and fluctuation theorems, but not the flucutation-dissipation relation. We discuss the rare but dominant realizations that contribute most to the exponential average of the work, and relate our results to potentially universal work distributions.Comment: 4 page

    Non-analytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable 1d-model for evaporation

    Full text link
    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated NN-particle system, the microcanonical TDFs exhibit (N-1) singular (non-analytic) microscopic phase transitions of the formal order N/2, separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros (DOZ) of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.Comment: version accepted for publication in PRE, minor additions in the text, references adde

    Adiabatic invariance with first integrals of motion

    Get PDF
    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.Comment: 2 pages, no figures (REVTeX 4
    corecore