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Adiabatic invariance with first integrals of motion

Artur B. Adib*
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755

~Received 11 May 2002; published 1 October 2002!

The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic
invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz@Ann. Phys.
~Leipzig! 33, 225 ~1910!#. An apparently independent extension of such formalism for systems bearing addi-
tional first integrals of motion was recently proposed by Hans H. Rugh@Phys. Rev. E64, 055101~2001!#,
establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection
with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the
success of a dynamical method for computing the entropy of classical interacting fluids, at least in some
potential applications where the presence of additional first integrals cannot be ignored.

DOI: 10.1103/PhysRevE.66.047101 PACS number~s!: 05.20.Gg, 05.45.2a, 05.70.2a, 02.40.Vh

Consider an isolated collection of particles withf degrees
of freedom evolving in time according to the usual laws of
classical particle mechanics~e.g., a gas ofN5 f /3 particles
inside a closed cylinder!. The dynamics of this system can be
uniquely described by a trajectory in the 2f -dimensional
phase space of the canonically conjugate variablesq
5(q1 , . . . ,qf) and p5(p1 , . . . ,pf). Let H(q,p;l) be the
Hamiltonian of the system depending~for simplicity! on a
single external parameterl ~e.g., the volume set by the po-
sition of the piston in the cylinder!. Assume further that no
other first integrals exist~see below, however!. Then, for
constantl, the trajectory of the system will be confined to
and will ~almost! fill out the whole surface of constant en-
ergy H(q,p;l)5El , provided ergodicity is assumed. Con-
sider now a process in whichl5l(t) varies very slowly in
comparison to a typically small ‘‘observation time’’t, which
in turn is a sufficiently large quantity with regard to micro-
scopic processes, such that the time averages of phase space
functions taken over it approximate the corresponding micro-
canonical averages at constantl ~this is an idealized instance
of an otherwise precisely observed process, e.g., a reversible
compression/expansion of the gas in the cylinder above!.
Such processes are usually referred to asadiabatic ~though
an additionalquasistaticqualifier would be certainly very
welcome!, and it was shown by Hertz@1,2# that the
(t-averaged! phase space volumeV(E,l) enclosed by the
surfaces of constant energyH(q,p;l)5El is a conserved
quantity during processes of this kind~justifying then, the
label adiabatic invariant!, much like the macroscopic en-
tropy of Clausius under the same conditions. Thermodynam-
ics could thus be constructed from mechanical arguments,
leading directly to a microscopic form of entropySV

5 ln V, which should be contrasted to the usual form inspired
by Boltzmann’s ideas involving the phase space areav
5]V/]E, Sv5 lnv, the difference between these two being
particularly relevant for finite systems@3–5#. These results of
Hertz were greatly appreciated by Einstein~see Ref.@6#, in

particular! and are often taken as the starting point of statis-
tical mechanics in the German literature@7,8#. However,
these simple and elegant observations seem to have escaped
the attention of modern@9–11# and even classic@12# treat-
ments~some rare exceptions are Refs.@13,14#!. The under-
lying derivation is simple and accessible and thus will not be
reproduced here~this so-calledergodic adiabatic invariance
problem, however, is far from being exhausted by Hertz’s
original papers, being constantly addressed at different levels
in the literature, see, e.g.,@15–18#!. It suffices to mention
here that, in connecting Rugh’s derivation with Hertz’s re-
sults, an infinitesimal change of the parameterl under the
presence ofparameter-independentfirst integrals Fi(q,p)
5I i maintains straightforwardly the adiabatic conservation
of the phase space volumeV(E,I ,l), with I[$I i%, and
thence of the entropySV , this observation following imme-
diately from the fact that (]V/]I i)dIi50 under a changedl
@compare, for example, Eq.~I. 236! of Ref. @7# or Eq. ~34.4!
in Ref. @8##. Another important result presented in Ref.@19#
was the possibility of computing the ‘‘bulk’’ temperature by
means of a microcanonical~and therefore temporal! average
at constantE,I , and l, namely, TV5^Y•¹H(Y)uE,I ,l&,
with Y parallel to the surfacesFi(q,p)5I i and satisfying
¹•Y51. I note in passing that a similar form of this gener-
alized equipartition theorem was obtained by Mu¨nster@7# for
the case of arbitrary cyclic coordinates present in the Hamil-
tonian ~which when cast in terms of appropriate variables,
e.g., center of mass for the conservation of linear and angular
momentum or action angle for more general integrals, trans-
lates essentially into the above requirement of parallelism!.

Finally, I would like to bring attention to the fact that the
extension provided by Rugh of Hertz’s original ideas can
incidentally explain the success of the so-called adiabatic
switching method@20# for computing entropies of classical
interacting fluids~which is one of the very few works to
make explicit use of Hertz’s results!, at least for the applica-
tions discussed below. This method takes full advantage of
the adiabatic invariance ofSV by initially considering a ‘‘ref-
erence’’ system with HamiltonianH0 whose entropy is
known explicitly ~e.g., an ideal gas! and slowly turning on
the interactions such that the final Hamiltonian equals the
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desired one,H1. If this process is sufficiently slow, it can be
considered as adiabatic~in the sense defined above!, the
phase space volumeV(E,l) ~and thus the entropySV) be-
ing a conserved quantity throughout the whole switching
process@24#. Therefore, a thermodynamic quantity which is
not a phase space function and hence not immediately ob-
tained by means of the usual microcanonical-temporal aver-
age@21# can be, in principle, easily computed. However, this
method is usually applied in the ‘‘molecular-dynamics en-
semble’’ in which the total linear momentumP is exactly
conserved due to the use of periodic boundary conditions
~see, e.g., Ref.@21#, Sec. 2.10 and references therein!. Such
additional first integrals of motion should be carefully con-
sidered when using the Hertz invariant, since the manifold
accessible to the system clearly does not coincide with the
whole constant-energy surface. This fact seems to have
passed unnoticed by the authors of Ref.@20#, although the
above observations by Rugh really give a strong theoretical

support to their method. Indeed, it is easy to see that all three
components ofP are parameter independent in this case: the
switching on of the internal interactions~which depend on
the relative position of the particles only! clearly does not
break the translational invariance of the Lagrangian. This
same idea can be equally well applied to a more correct
formulation of this ensemble that was only recently realized
@22,23#, in which three additional first integrals~the compo-
nents of the center of massR) are considered. It is worth
emphasizing that this simple result was only possible be-
cause of the parameter independence of the integrals of mo-
tion. The opposite and more general case, however, is still an
open issue, as pointed out by Rugh.

It is my pleasure to thank V. L. Berdichevsky, C. Jarzyn-
ski, and W. P. Reinhardt for the extremely fruitful correspon-
dence. Financial support and computational resources were
provided by Dartmouth College and its Field Theory/
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