1,003 research outputs found

    Hidden Convexity in Partially Separable Optimization

    Get PDF
    The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some partial separable structure. Among other things, the new hidden convexity results open up the possibility to solve multi-stage robust optimization problems using certain nonlinear decision rules.convex relaxation of nonconvex problems;hidden convexity;partially separable functions;robust optimization

    Stability in Designer Gravity

    Full text link
    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al.and find they differ from the spinor charges except when W=0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which WW has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this, by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed.Comment: 29 page

    Towards a Big Crunch Dual

    Full text link
    We show there exist smooth asymptotically anti-de Sitter initial data which evolve to a big crunch singularity in a low energy supergravity limit of string theory. This opens up the possibility of using the dual conformal field theory to obtain a fully quantum description of the cosmological singularity. A preliminary study of this dual theory suggests that the big crunch is an endpoint of evolution even in the full string theory. We also show that any theory with scalar solitons must have negative energy solutions. The results presented here clarify our earlier work on cosmic censorship violation in N=8 supergravity.Comment: 27 pages, 3 figures;v2:minor correction

    Holographic Description of AdS Cosmologies

    Full text link
    To gain insight in the quantum nature of the big bang, we study the dual field theory description of asymptotically anti-de Sitter solutions of supergravity that have cosmological singularities. The dual theories do not appear to have a stable ground state. One regularization of the theory causes the cosmological singularities in the bulk to turn into giant black holes with scalar hair. We interpret these hairy black holes in the dual field theory and use them to compute a finite temperature effective potential. In our study of the field theory evolution, we find no evidence for a "bounce" from a big crunch to a big bang. Instead, it appears that the big bang is a rare fluctuation from a generic equilibrium quantum gravity state.Comment: 34 pages, 8 figures, v2: minor changes, references adde

    Generic Cosmic Censorship Violation in anti de Sitter Space

    Full text link
    We consider (four dimensional) gravity coupled to a scalar field with potential V(\phi). The potential satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum. We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in asymptotically anti de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in asymptotically flat spacetimes, but we do not have definite results.Comment: 4 pages, v2: minor change

    Gravitational Wave Bursts from Cosmic Superstrings with Y-junctions

    Full text link
    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve non-periodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.Comment: 20 pages, 5 figure

    Hidden Convexity in Partially Separable Optimization

    Get PDF
    The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some partial separable structure. Among other things, the new hidden convexity results open up the possibility to solve multi-stage robust optimization problems using certain nonlinear decision rules.
    • 

    corecore