We study the stability of designer gravity theories, in which one considers
gravity coupled to a tachyonic scalar with anti-de Sitter boundary conditions
defined by a smooth function W. We construct Hamiltonian generators of the
asymptotic symmetries using the covariant phase space method of Wald et al.and
find they differ from the spinor charges except when W=0. The positivity of the
spinor charge is used to establish a lower bound on the conserved energy of any
solution that satisfies boundary conditions for which W has a global minimum.
A large class of designer gravity theories therefore have a stable ground
state, which the AdS/CFT correspondence indicates should be the lowest energy
soliton. We make progress towards proving this, by showing that minimum energy
solutions are static. The generalization of our results to designer gravity
theories in higher dimensions involving several tachyonic scalars is discussed.Comment: 29 page