79 research outputs found

    Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    Get PDF
    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems

    Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    Get PDF
    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems

    Headstrong intervention for pediatric migraine headache: a randomized clinical trial

    Get PDF
    Background The purpose of this study was to evaluate the efficacy of a self-guided CD-ROM program (“Headstrong”) containing cognitive-behavioral self-management strategies versus an educational CD-ROM program for treating headaches, headache-related disability, and quality of life. Methods Participants were 35 children ages 7–12 years with migraine recruited from one university medical center and two children’s hospital headache clinics. Participants were randomly assigned to complete the Headstrong or educational control CD-ROM program over a 4-week period. Data on headache frequency, duration, and severity, migraine-related disability, and quality of life (QOL) were obtained at baseline, post-intervention, and 3-months post-intervention. Results At post-intervention, Headstrong resulted in lower severity (on a 10-point scale) than the control group by child report (5.06 ± 1.50 SD vs. 6.25 ± 1.92 SD, p = 0.03, ES = 0.7). At 3-months post-intervention, parents reported less migraine-related disability (on the PedMIDAS) in the Headstrong group compared to the control group (1.36 ± 2.06 SD vs. 5.18 ± 6.40 SD; p = 0.04, ES = 0.8). There were no other group differences at post treatment or at 3-months post-intervention. Conclusions When compared to an educational control, Headstrong resulted in lower pain severity at post-treatment and less migraine-related disability at 3-months post-intervention, by child and parent report respectively. Headache frequency and quality of life did not change more for Headstrong versus control. Additional research is needed on the Headstrong Program to increase its efficacy and to test it with a larger sample recruited from multiple centers simultaneously.The study reported in this paper was funded by a grant from the National Institutes of Health, (National Institute of Neurological Disorders and Stroke), R01-NS046641, Michael Rapoff, Principal Investigator

    High Microbial Diversity Despite Extremely Low Biomass in a Deep Karst Aquifer

    Get PDF
    Despite the importance of karst aquifers as a source of drinking water, little is known about the role of microorganisms in maintaining the quality of this water. One of the limitations in exploring the microbiology of these environments is access, which is usually limited to wells and surface springs. In this study, we compared the microbiology of the Madison karst aquifer sampled via the potentiometric lakes of Wind Cave with surface sampling wells and a spring. Our data indicated that only the Streeter Well (STR), which is drilled into the same hydrogeologic domain as the Wind Cave Lakes (WCL), allowed access to water with the same low biomass (1.56–9.25 × 103 cells mL-1). Filtration of ∼300 L of water from both of these sites through a 0.2 μm filter allowed the collection of sufficient cells for DNA extraction, PCR amplification of 16S rRNA gene sequences, and identification through pyrosequencing. The results indicated that bacteria (with limited archaea and no detectable eukaryotic organisms) dominated both water samples; however, there were significant taxonomic differences in the bacterial populations of the samples. The STR sample was dominated by a single phylotype within the Gammaproteobacteria (Order Acidithiobacillales), which dramatically reduced the overall diversity and species richness of the population. In WCL, despite less organic carbon, the bacterial population was significantly more diverse, including significant contributions from the Gammaproteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Planctomycetes, Fusobacter, and Omnitrophica phyla. Comparisons with similar oligotrophic environments suggest that karst aquifers have a greater species richness than comparable surface environs. These data also demonstrate that Wind Cave provides a unique opportunity to sample a deep, subterranean aquifer directly, and that the microbiology of such aquifers may be more complex than previously anticipated

    Methods for Bayesian inversion of seismic data

    Get PDF
    The purpose of Bayesian seismic inversion is to combine information derived from seismic data and prior geological knowledge to determine a posterior probability distribution over parameters describing the elastic and geological properties of the subsurface. Typically the subsurface is modelled by a cellular grid model containing thousands or millions of cells within which these parameters are to be determined. Thus such inversions are computationally expensive due to the size of the parameter space (being proportional to the number of grid cells) over which the posterior is to be determined. Therefore, in practice approximations to Bayesian seismic inversion must be considered. A particular, existing approximate workflow is described in this thesis: the so-called two-stage inversion method explicitly splits the inversion problem into elastic and geological inversion stages. These two stages sequentially estimate the elastic parameters given the seismic data, and then the geological parameters given the elastic parameter estimates, respectively. In this thesis a number of methodologies are developed which enhance the accuracy of this approximate workflow. To reduce computational cost, existing elastic inversion methods often incorporate only simplified prior information about the elastic parameters. Thus a method is introduced which transforms such results, obtained using prior information specified using only two-point geostatistics, into new estimates containing sophisticated multi-point geostatistical prior information. The method uses a so-called deep neural network, trained using only synthetic instances (or `examples') of these two estimates, to apply this transformation. The method is shown to improve the resolution and accuracy (by comparison to well measurements) of elastic parameter estimates determined for a real hydrocarbon reservoir. It has been shown previously that so-called mixture density network (MDN) inversion can be used to solve geological inversion analytically (and thus very rapidly and efficiently) but only under certain assumptions about the geological prior distribution. A so-called prior replacement operation is developed here, which can be used to relax these requirements. It permits the efficient MDN method to be incorporated into general stochastic geological inversion methods which are free from the restrictive assumptions. Such methods rely on the use of Markov-chain Monte-Carlo (MCMC) sampling, which estimate the posterior (over the geological parameters) by producing a correlated chain of samples from it. It is shown that this approach can yield biased estimates of the posterior. Thus an alternative method which obtains a set of non-correlated samples from the posterior is developed, avoiding the possibility of bias in the estimate. The new method was tested on a synthetic geological inversion problem; its results compared favourably to those of Gibbs sampling (a MCMC method) on the same problem, which exhibited very significant bias. The geological prior information used in seismic inversion can be derived from real images which bear similarity to the geology anticipated within the target region of the subsurface. Such so-called training images are not always available from which this information (in the form of geostatistics) may be extracted. In this case appropriate training images may be generated by geological experts. However, this process can be costly and difficult. Thus an elicitation method (based on a genetic algorithm) is developed here which obtains the appropriate geostatistics reliably and directly from a geological expert, without the need for training images. 12 experts were asked to use the algorithm (individually) to determine the appropriate geostatistics for a physical (target) geological image. The majority of the experts were able to obtain a set of geostatistics which were consistent with the true (measured) statistics of the target image

    Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    Get PDF
    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems
    corecore