
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Methods for Bayesian inversion of

seismic data

Matthew James Walker

Thesis submitted for the degree of

Doctor of Philosophy

The University of Edinburgh

2014



Declaration

I certify that this thesis, and the work presented herein, is my own original composi-

tion. Where it draws on the work of others, this is acknowledged at the appropriate

points in the text. This work has not been previously submitted for any other de-

gree, or professional qualification. Chapters 3, 4 and 5 comprise work that has been

accepted for publication in peer-reviewed scientific journals. These articles may be

accessed at the following locations on-line:

Chapter 3: iopscience.iop.org/0266-5611/30/6/065002/

(doi: 10.1088/0266-5611/30/6/065002)

Chapter 4: onlinelibrary.wiley.com/doi/10.1002/2014JB011010/abstract

(doi: 10.1002/2014JB011010)

Chapter 5: gji.oxfordjournals.org/content/198/1/342

(doi: 10.1093/gji/ggu132)

Matthew James Walker

1

iopscience.iop.org/0266-5611/30/6/065002/
onlinelibrary.wiley.com/doi/10.1002/2014JB011010/abstract
gji.oxfordjournals.org/content/198/1/342


Lay summary

In many applications seismic data is used to infer the physical properties of the

subsurface by using the process of seismic inversion. However multiple configurations

of the subsurface physical properties may give rise to the same observed seismic data

thus there is no unique solution to such a problem, but rather a set of possible

solutions. Bayesian seismic inversion methods seek to assign probabilities to each

possible solution given the observed data and any prior information which may be

available about the subsurface. The assignment of probabilities to each possible

solution is usually a computationally expensive task since typically there are a very

large, if not infinite, number of possible solutions. This thesis describes a number of

methods whose purpose is to overcome this limitation. Furthermore, the collation of

prior information, from numerous and often highly subjective sources, into a format

usable in such methods is a difficult problem. Thus this thesis also describes a

method whose aim is to aid this process.
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Abstract

The purpose of Bayesian seismic inversion is to combine information derived from

seismic data and prior geological knowledge to determine a posterior probability

distribution over parameters describing the elastic and geological properties of the

subsurface. Typically the subsurface is modelled by a cellular grid model containing

thousands or millions of cells within which these parameters are to be determined.

Thus such inversions are computationally expensive due to the size of the parameter

space (being proportional to the number of grid cells) over which the posterior is to

be determined. Therefore, in practice approximations to Bayesian seismic inversion

must be considered. A particular, existing approximate workflow is described in

this thesis: the so-called two-stage inversion method explicitly splits the inversion

problem into elastic and geological inversion stages. These two stages sequentially

estimate the elastic parameters given the seismic data, and then the geological pa-

rameters given the elastic parameter estimates, respectively. In this thesis a number

of methodologies are developed which enhance the accuracy of this approximate

workflow.

To reduce computational cost, existing elastic inversion methods often incorpo-

rate only simplified prior information about the elastic parameters. Thus a method

is introduced which transforms such results, obtained using prior information spec-

ified using only two-point geostatistics, into new estimates containing sophisticated

multi-point geostatistical prior information. The method uses a so-called deep neu-

ral network, trained using only synthetic instances (or ‘examples’) of these two esti-

mates, to apply this transformation. The method is shown to improve the resolution

and accuracy (by comparison to well measurements) of elastic parameter estimates

determined for a real hydrocarbon reservoir.

It has been shown previously that so-called mixture density network (MDN) in-

version can be used to solve geological inversion analytically (and thus very rapidly

3



BAYESIAN INVERSION OF SEISMIC DATA

and efficiently) but only under certain assumptions about the geological prior dis-

tribution. A so-called prior replacement operation is developed here, which can be

used to relax these requirements. It permits the efficient MDN method to be incor-

porated into general stochastic geological inversion methods which are free from the

restrictive assumptions. Such methods rely on the use of Markov-chain Monte-Carlo

(MCMC) sampling, which estimate the posterior (over the geological parameters) by

producing a correlated chain of samples from it. It is shown that this approach can

yield biased estimates of the posterior. Thus an alternative method which obtains

a set of non-correlated samples from the posterior is developed, avoiding the possi-

bility of bias in the estimate. The new method was tested on a synthetic geological

inversion problem; its results compared favourably to those of Gibbs sampling (a

MCMC method) on the same problem, which exhibited very significant bias.

The geological prior information used in seismic inversion can be derived from real

images which bear similarity to the geology anticipated within the target region of the

subsurface. Such so-called training images are not always available from which this

information (in the form of geostatistics) may be extracted. In this case appropriate

training images may be generated by geological experts. However, this process can

be costly and difficult. Thus an elicitation method (based on a genetic algorithm)

is developed here which obtains the appropriate geostatistics reliably and directly

from a geological expert, without the need for training images. 12 experts were asked

to use the algorithm (individually) to determine the appropriate geostatistics for a

physical (target) geological image. The majority of the experts were able to obtain

a set of geostatistics which were consistent with the true (measured) statistics of the

target image.
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Chapter 1

Introduction

1.1 Overview

Seismic data can be used to infer the physical properties of the subsurface. This

process, herein referred to as seismic inversion, is particularly valuable for reser-

voir characterisation (Haas and Dubrule, 1994). The parameters that are to be

inverted for depend on the context of the inversion. Viscoelastic parameters can be

directly related to, and hence inferred from, the seismic data using the physics of

wave propagation. However, it is also desirable to infer parameters describing geo-

logical and petrophysical properties of interest in the subsurface, henceforth referred

to as geological parameters, since such parameters can be used in reservoir appraisal,

development and production processes. They cannot be directly related to the seis-

mic data by wave theory, but may be related to the viscoelastic parameters using

theoretical rock-physics or statistical models derived from empirical data.

The seismic data is usually derived from the results of large-scale surface seismic

surveys where the seismic wavefield is recorded at the surface. In essence, this raw

(henceforth ‘pre-stack’) seismic data is inverted to estimate the viscoelastic parame-

ters and then subsequently the geological parameters can be estimated by inverting

the theoretical/statistical relationship between them and the viscoelastic parame-

ters. However, the physics of wave-propagation in viscoelastic media is complex and

direct full-waveform inversion of pre-stack data is costly and unstable, especially

when applied to data containing high-frequency information (Virieux and Operto,

2009). Thus the pre-stack data is usually processed first such that it can be re-

lated directly to the viscoelastic parameters by the more computationally-tractable

13
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physics of amplitude-versus-angle (AVA) analysis (Tsvankin et al., 2010). This so-

called AVA-type data then constitutes the seismic data which is inverted for reservoir

characterisation. Additionally, AVA-type data is usually processed with the inten-

tion of removing the effects of viscoelasticity, thus it is assumed henceforth that only

the elastic parameters can be inferred from such data.

A well-posed inverse problem is defined as one for which a unique solution exists

that varies smoothly with the value of the observed data. Thus the elastic inverse

problem is inherently ill-posed, since an infinite number of subsurface elastic mod-

els will fit the observed seismic data (Thore, 2013). This is because seismic noise

exists at all frequencies and as the seismic wavefield propagates through the subsur-

face high frequencies are attenuated to a greater extent than low frequencies to the

point that noise obliterates signal at very high frequencies (Pendrel, 2001). Seismic

sources are generally poor at producing low frequencies and these frequencies tend

to be damped by seismometers, thus noise also begins to dominate signal at low fre-

quencies (Barzilai et al., 1998). Furthermore, reflection seismic data is only sensitive

to contrasts in the elastic parameters in the subsurface, thus the absolute values of

those parameters cannot be determined uniquely (or equivalently, the zero-frequency

or mean component of the elastic parameter model cannot be determined) from such

data.

The inverse relationship between the elastic parameters and the geological pa-

rameters is also generally non-unique. Fundamentally, this is because both the elas-

tic and geological parameters are defined as bulk properties of the subsurface rock

(Spikes et al., 2007). This is necessary because the physical structure of the subsur-

face cannot be determined from the seismic data, or feasibly modelled, at infinitely

high resolution. Thus usually the subsurface is modelled as a grid of cells of finite

size within which the bulk elastic and geological properties of the rock are to be

determined. The choice of the size of the cells is usually made dependent upon the

frequency content of the seismic data and the availability of other sources of data

such as well data. However, the size of the cells is invariably greater than the small-

est scale of heterogeneity in natural subsurface rocks (Mavko et al., 2009). Thus a

range of different physical configurations of the rock, including those with differing

bulk geological parameters, can give rise to the same bulk elastic parameters within

a model cell. For example, a given measurement of the bulk elastic parameters in a

cell may correspond to a wide variety of different values for bulk porosity, depending

upon the distribution of porosity and the characteristics of the rock matrix within

14



Chapter 1.2 BAYESIAN INVERSION OF SEISMIC DATA

that cell.

Thus the elastic, geological and overall process of seismic inversion are ill-posed

inverse problems. Fortunately, there are always other sources of information about

the geological and elastic parameters which can help to constrain their values. This

information constitutes so-called prior information, and the combination of this with

the seismic data, to form an estimate of the parameters which correctly characterises

uncertainty, is achieved using Bayesian methods. The output of such techniques is

an estimate of the posterior probability distribution, which describes the probability

of all of the different possible values for the elastic and geological parameters, given

the observed data (Buland and Omre, 2003a) and the prior information. Bayesian

seismic inversion is challenging in practice since it requires the choice of forward,

prior and data-error models which accurately represent the information available.

Furthermore, the computational cost of Bayesian inversion generally scales with the

accuracy of these models. Thus this thesis concentrates on developing methods which

improve the efficiency and efficacy of current methods for Bayesian seismic inversion

for reservoir characterisation.

The rest of this introductory chapter describes the Bayesian seismic inversion

problem in general, the problems associated with solving it, and the contribution of

this thesis to the field. In section 1.2 the cellular grid and variables, used to model

the subsurface in this thesis, are described. In section 1.3 the geological parameters

and their relation to the elastic parameters are described. Section 1.4 describes the

AVA-type data, and the forward model which relates it to the elastic parameters.

Section 1.5 discusses the general framework for solving Bayesian seismic inversion

problems, and the difficulties associated with solving it. Sections 1.6 and 1.7 then

describe the particular approach to inversion that is the focus of this thesis. A

number of research topics are identified throughout this chapter; section 1.8 outlines

these topics and how these are addressed in the rest of the thesis. It should be noted

that there are many alternative interpretations of the seismic inversion problem

depending mainly on the type of supplementary data available (e.g., well data or

other geophysical survey results). The discussion presented here, although general,

concentrates on the problem of inverting seismic data alone, and thus does not cover

all such interpretations.
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1.2 The cellular model-grid and variable notation

In this thesis we use cellular grids to model the subsurface. Depending upon appli-

cation, these may be one (1-D), two (2-D) or three (3-D) dimensional grids. Cells

within 3-D grids are described by three coordinates with x ∈ [1, 2, ..., X − 1, X] and

y ∈ [1, 2, ..., Y −1, Y ] describing the position of the cell in two lateral directions, and

z ∈ [1, 2, ..., Z − 1, Z] describing the position of the cell in the vertical direction. X,

Y and Z are the dimensions of the grid. By definition x, y and z are unit-less: they

simply represent the number of the cell in their respective direction (the size of cells,

and their absolute positions will be specified where necessary for real data). Thus

the total number of cells in the grid is M = Z×X×Y . Indices are used to reference

cells within the grid, defined as i = (Z ×X × (y − 1)) + (Z × (x− 1)) + z.

Cells within 2-D grids are described by two coordinates with x ∈ [1, 2, ..., X−1, X]

describing lateral position and z ∈ [1, 2, ..., Z − 1, Z] describing vertical position,

where X and Z are the dimensions of the grid. The total number of cells in the grid

is M = Z ×X, and a 2-D grid index is defined as i = (Z × (x− 1)) + z. 1-D grids

are useful for describing single traces in the subsurface, thus cells in such grids are

referenced by a single coordinate z ∈ [1, 2, ..., Z − 1, Z] describing vertical position,

or equivalently index, in the grid. In any case, the set of all indices in a grid (1-D,

2-D or 3-D) is written H = {1, 2, ...,M − 1,M}.
A vector describing the bulk elastic parameters ei is assigned to each cell i in

a grid. In general ei = [IP , IS, ρ]i where IS is S-wave impedance, IP is P-wave

impedance and ρ is density. We will use the notation e = [e1, e2, ..., eM ] to refer to a

vector containing all elastic parameter vectors in a grid (where the subscripts refer

to the index of a cell in the grid). It will be useful later also to refer to the elastic

parameters down the z dimension at a given lateral position x = [x, y] (for a 3-D

grid) using the notation ex = { ex,y,z | z ∈ [1, 2, ..., Z − 1, Z] }, where ex,y,z is the

elastic parameter vector at the cell with coordinates [x, y, z].

The geological parameters used for reservoir characterisation can be discrete or

continuous, or a combination of the two. Discrete geological parameters usually

describe a single categorical variable for a cell such as facies or rock-type. Thus to

model these we assign a discrete variable gi to each cell in the grid, and in general

we will we use the notation g = [g1, g2, ..., gM ] to refer to a vector containing all

such parameters in the grid (where the subscripts refer to the index of a cell in

the grid). Continuous geological parameters usually describe multiple bulk physical
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properties of the rock such as porosity or water saturation. Thus to model these

we assign a vector of L continuous geological parameters mi = [m1,m2, ...,mL]i to

each cell in the grid. Generally, the set of all such vectors in the grid is written

m = [m1,m2, ...,mM ] (where, again, the subscripts refer to the index of a cell in the

grid). The distinction between continuous and discrete geological parameters will be

useful later, but for convenience in the rest of this introductory chapter gi is used to

represent geological parameters in general. All equations written using gi are equally

valid for mi, or the combination [gi,mi] (with substitution of appropriate integration

and summation limits). The gi variables associated with all cells with indices in a

set S are referenced using the notation gS = {gi | i ∈ S}, where S = [1, 4, 6], for

example. This notation is used in the same way for ei.

Both gi and ei are interpreted as random variables, and we write their sample

spaces as G and R3, respectively. We assume that the variables have identical sample

spaces in each cell, thus the sample spaces of g and e may be written GM and R3M

respectively, where the M exponent implies that the sample space for a single cell is

taken to the power of the number of cells in the grid. For the special case where gi

is discrete, the size of G can be written |G|, and the size of GM can be calculated as

|GM | = |G|M . (1.1)

Probability mass and density functions may be defined over discrete (e.g., g) and

continuous (e.g., e) variables, respectively. A so-called mixed probability distribution

may also be defined over a combination (e.g., [g, e]) of these two variable types.

We use the notation p() to denote each of these types of probability distribution

interchangeably. In this thesis, we will frequently refer to parametric distributions,

which are a probability mass, density or mixed functions of closed-form which may

be evaluated analytically, and whose normalisation constant may also be calculated

analytically.

The above notation will be used throughout this introductory chapter. However,

some slight modifications must be made to this notation within Chapters 2-5. Thus

for the avoidance of doubt, each of these chapters contains a section which describes

the notation used therein.
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1.3 The geological parameters

The ei variable can be related to gi using a forward model. This can be established

using empirical measurements from lab- or well- data to constrain a purely statistical

model (Chang et al., 2006), or rock-physics theory can be used to establish a de-

terministic relationship (Avseth et al., 2005). Rock-physics models are constructed

to predict ei, under some assumptions about the micro-structure of the rock, given

gi (Mavko et al., 2009). For example, a model may be designed to predict ei for

a rock which has a consolidated, homogeneous matrix with round pores, given its

bulk porosity. Given the heterogeneity of natural rocks, it is rare that such models

are an accurate depiction of reality and thus they can suffer from epistemic errors.

Thus, in general, the forward relationship established with either method is uncer-

tain. Fundamentally this is due to the definition of these as bulk parameters: gi does

not describe the exact physical structure of the rock within cell i and therefore can-

not exactly predict ei. Given this uncertainty, it is appropriate to use a conditional

probability distribution p(ei|gi) (henceforth, the cell-wise geological likelihood), to

describe the forward relationship at each cell. We henceforth assume that a single

such distribution is applicable throughout the model grid (i.e., the distribution is

invariant to i).

It is often assumed (Mukerji et al., 2001) that the elastic parameters in a given

cell are completely explained by the geological parameters in that cell, thus the

specification of any other variable in the grid yields no more useful information

about the elastic parameters at that cell. This is referred to as the local geological

likelihood property henceforth. Mathematically, it allows us to write

p(ei|gi,g⊆H\i, e⊆H\i) = p(ei|gi) (1.2)

where the notation ⊆ H\i should be read as ‘any set of indices in the grid which

does not include i’ (thus g⊆H\i is the set of all gi variables in those cells).

The property is true if we have derived a causal forward relationship between ei

and gi, which is usually the case and which we assume to be the case henceforth. The

property permits simplification of the so-called joint geological likelihood distribution

p(e|g), which describes the joint conditional probability of ei ∀ i given gi ∀ i (where

henceforth ∀ i is used as the abbreviation of ∀ i ∈ H). Specifically, we are now

able to write it as a product of each of the individual cell-wise geological likelihoods,
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which is shown by decomposing p(e|g) using elementary probability identities as

p(e|g) =
M∏
i=1

p(ei|g, e<i) =
M∏
i=1

p(ei|gi). (1.3)

where the subscript < i indicates the set of all indices in H less than i (thus e<i

is the set of all elastic parameter vectors in cells with index less than i), and the

second inequality holds because of the assumption of the local geological likelihood

property.

1.4 The AVA-type data

The AVA-type data is formed by first processing pre-stack seismic data such that it

contains only primary P-wave reflection events. Pre-stack migration is then applied

such that common mid-point gathers can be assumed to represent the response of a

locally 1-D earth (Castagna, 1993). This data is then converted from the offset- to

incident angle- domain with respect to the normal to the discontinuity surface which

generated the reflection event. Each reflection event should be normalised as if the

incident wave had constant amplitude irrespective of the position of the discontinuity

surface, which requires compensation for the effects of intrinsic (viscoelastic) and

extrinsic (scattering and spreading) attenuation (Hampson, 1991). Ideal AVA data

then comprises traces, dθ,x describing amplitudes of the reflected energy at all vertical

positions z and incidence angle θ, at a given lateral position x = [x, y]. Since it is

assumed to represent the response of a locally 1-D earth, it follows that we can

assume that a single trace of data is dependent only on the elastic parameter profile

with z (depth) at the same lateral position, thus we write dθ,x(ex). Approximations

to such data are now a standard output of seismic processing (Virieux and Operto,

2009), but significant error will exist in such data due to inaccuracy in the amplitude

compensation (Hubral, 1983) and angle-to-offset transformation (Sava and Fomel,

2003). As noted above, the compensation for the effects of viscoelasticity means

that information regarding the viscoelastic properties of the subsurface is ignored.

We may model the data at a single lateral position dθ,x(ex) by convolving an

angle-dependent wavelet with a reflectivity series (Hampson et al., 2005). The re-

flectivity series can be calculated using approximations of the Zoeppritz equations

(Shuey, 1985). For example, the reflectivity (at incidence angle θ) can be calcu-
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lated using the weak contrast approximation to the reflection coefficient (Aki and

Richards, 2002) as

rθ =
1

2

(
∆α
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+

∆ρ

ρ̄

)
+
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2
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)
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(1.4)

where α = IP
ρ

is the P-wave velocity, β = IS
ρ

is the S-wave velocity and εθ represents

an error term comprising missing higher order terms in the Taylor expansion used in

this approximation. The overbar and delta symbols denote averages and differences

of these quantities over the discontinuity, respectively. Since we assume that the

data are generated from a locally 1-D earth we model them using a reflectivity

series calculated in the vertical z direction. We calculate the reflectivity at each

vertical position z with respect to z − 1, yielding a vertical reflectivity series vector

rθ,x(ex) for angle of incidence θ. Given this reflectivity vector, the data is modelled

using the convolution dθ,x(ex) = rθ,x(ex) ∗ wθ, where wθ is a vector specifying the

appropriate wavelet for angle of incidence θ. This convolution can be written as a

matrix multiplication (Buland and Omre, 2003b)

dθ,x(ex) = sθrθ,x(ex) (1.5)

where sθ is the Toeplitz matrix for the wavelet vector wθ (padded with an appropriate

number of zeroes to ensure that the matrix multiplication represents convolution

with the reflectivity series). Variation in the wavelet between angles of incidence is

assumed to arise from variation in dispersion caused by differing ray path length and

trajectory (Buland and Omre, 2003c). It is usually assumed that a single, constant-

in-time wavelet wθ is appropriate for each angle of incidence (or even a range of

angles). This is usually acceptable if the vertical extent of the region of interest for

which we invert (a reservoir interval, for instance) is small and hence little dispersion

may occur within that interval. In practice so-called angle-stacks are constructed

where the migrated seismic data is stacked over angular ranges of incidence, rather

than data vectors which are valid for single angles of incidence. Such stacks are easier

to generate from pre-stack data and increase the signal-to-noise ratio. In effect they
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are formed by stacking dθ,x(ex) vectors for ranges of θ. Henceforth, we use angular

ranges called ‘near’ (θ = 6− 16◦), ‘mid’ (θ = 16− 26◦) and ‘far’ (θ = 26− 36◦), and

notation such as dmid,x(ex) to mean the angle-stack data for the mid-range angles.

It is convenient to be able to write all the data down a trace, and its relation to

the elastic parameters, as a single matrix equation. This can be derived by analogy

to equation 1.5, as

f(ex) = dx(ex) = SR(ex) + n (1.6)

where S is a block-matrix formed by concatenating the wavelet Toeplitz matrices for

each angular range, R(ex) is a single reflectivity vector constructed by concatenating

the reflectivity vectors for each angular range, and dx(ex) is the AVA-type data for

each angular range, arranged into a single vector. These vectors and matrices are

defined in Appendix A. In equation 1.6 the notation f(ex) indicates that this equation

represents the forward physics of the problem. n is a vector (with dimension equal

to SR(ex)) of zero-mean Gaussian noise distributed as

n ∼ φ(0,Σd) (1.7)

where φ(0,Σd) is a multivariate Gaussian distribution with mean vector 0 and co-

variance matrix Σd, which is the error covariance matrix describing the random error

on the data for all angle stacks. Both Σd and S can be estimated for the seismic data

using well-tying techniques (see e.g., Bo et al., 2013), and we assume henceforth that

these parameters are estimated separately from the seismic inversion procedure. For

simplicity we also assume henceforth that both Σd and S are constant with respect

to lateral position x. However, both quantities may in fact vary across the extent of

the seismic survey; indeed they are often treated as random variables within seismic

inversion (Buland and Omre, 2003c). Processing errors (e.g., in the offset to angle

transformation) in the AVA-type data cannot be estimated independently, and will

contribute to the seismic noise estimated in the well-tying procedure (i.e., Σd).

It is appropriate to write the uncertain AVA forward relation at a single lateral

position x using the conditional probability distribution p(dx|ex), which is the prob-

ability of observing the AVA-data dx given the elastic parameter configuration ex.

Given that the seismic noise Σd is assumed to be distributed normally, then this
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distribution can be written as a Gaussian function thus

p(dx|ex) = (2π)−
k
2 |Σd|−

1
2 exp

(
−1

2
(dx − f(ex))TΣd

−1 (dx − f(ex))

)
(1.8)

where f(ex) is the AVA forward function (equation 1.8) and k is the dimensionality

of the data vector. We henceforth assume that the errors on the AVA-data are

approximately independent with respect to lateral position x. Thus we may write

the joint probability of all of the AVA-type data in the grid d, as the product

p(d|e) =
∏
∀ x

p(dx|ex) (1.9)

where ∀ x implies the set of all lateral positions [x, y] (or x in the 2-D case) in the grid.

The distribution in equation 1.9 is referred to as the elastic likelihood distribution

henceforth.

1.5 The general Bayesian framework for seismic

inversion

1.5.1 The posterior

In this section we discuss how d may be inverted for g and e in a Bayesian framework.

Ideally, we aim to determine the so-called joint posterior probability distribution

p(e,g|d) which is the joint probability of the elastic e and geological g parameters,

given the AVA-type data d (Bosch et al., 2010). It can be expressed using Bayes’

rule (see e.g., Ulrych et al., 2001) as

p(e,g|d) =
p(d|e,g)p(e,g)

p(d)
, (1.10)

where p(e,g) is the joint prior probability distribution, which describes the informa-

tion known about e and g independently of the data. The p(d) term on the right

hand side of equation 1.10 is a constant since it is a function only of the data d, which

is observed and hence fixed in this inversion context. It is referred to as the nor-

malising constant since it may be shown that p(d) =
∫
R3M

∑
g∈GM p(d|e,g)p(e,g)de

(Sambridge et al., 2006).
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It is assumed that d can be completely explained by e by the physics of elastic

wave propagation. Thus the final distribution in equation 1.10 can be written using

conditional independence as

p(d|e,g) = p(d|e), (1.11)

since the specification of g provides no additional information about d (to that

provided by e). Thus the likelihood in equation 1.10 is equivalent to the elastic

likelihood given in equation 1.9. All distributions in the joint posterior in equation

1.10 have now been defined apart from the joint prior distribution p(e,g), which is

discussed in the next section.

1.5.2 The prior

Information always exists about the geology of the subsurface independently of the

seismic data, which can be used to inform the inversion (Curtis and Wood, 2004).

This information is often specific to the region of interest, such as the expected spatial

distribution of facies in the subsurface (Kolbjørnsen et al., 2013). However, even if

such specific information is absent then there is at least information in the sense that

the general laws and concepts of geology can be applied, such as those describing the

geometry of sedimentological or structural features (Torres-Verdin et al., 1999) or

how those features are created (Hill et al., 2009). Such prior information about g can

be codified within the probability distribution p(g) (henceforth the geological prior).

This geological information can in turn be transformed into information about the

elastic parameters using p(e|g) (equation 1.3); the joint prior distribution required

by equation 1.10 can then be constructed using the probability identity

p(e,g) = p(e|g)p(g). (1.12)

Usually, p(g) is defined using geostatistical methods. In two-point geostatistics

the variogram is used to specify the variance of the difference between values of gi

at two different positions in the grid, as a function of the relative position of the

two points. Such a function can be determined empirically for a so-called training

image of g, which is an image of g designed to demonstrate all of the geological

features which are expected of the geological parameters, given the available prior

information. The empirical variogram can then be used to define p(g) using either a
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non-parametric or parametric approach. In the former case p(g) is defined as being

equiprobable for all realisations of g which are consistent (within some tolerance)

with the empirical variogram measured (Olea, 1999, p. 154). In the parametric ap-

proach, it is assumed a-priori that p(g) may be written as some parametric function.

For example, one may assume that p(g) is a Gaussian distribution for which the

mean vector may be estimated directly from the training image, and the covariance

matrix can be calculated from the empirical variogram calculated for the training

image (Olea, 1999, p. 146).

The use of two-point geostatistics (i.e., the variogram) is not a natural choice for

describing the variation of discrete, particularly categorical, geological parameters

(Caers, 2005, p. 24) (that is to say, the above methods are most useful when we

are dealing with continuous geological variables, m). Furthermore, it cannot en-

capsulate higher-order statistical information about g (Remy et al., 2009, p. 50).

Multi-point geostatistics is designed to capture such sophisticated information, and

is more amenable to the modelling of discrete geological variables. In practice, such

multi-point statistical information is specified using probability distributions. For

example, a probability distribution can be defined which describes the probability of

the geological parameters at a single cell, conditioned upon the value of the param-

eters in the surrounding cells (Remy et al., 2009, p. 64), which is written

p(gi|gH\i) =
p(g)

p(gH\i)
, (1.13)

where H\i is the set of all indices in the grid except i. This distribution is then

considered to be stationary with respect to position i in the subsurface grid. Such

distributions, henceforth referred to as full conditionals (Besag, 1974), can be deter-

mined from a training image. Full conditionals, and their relationship to p(g), are

discussed in detail later (section 4.4), but for now we assume that the specification

of the stationary distribution p(gi|gH\i) permits evaluation of a corresponding prior

probability distribution p(g).

The above discussion assumes that appropriate training images are available for

the extraction of statistics with which we may define p(g). Photographs (Dueholm

and Olsen, 1993) or even geophysical survey results (Caers et al., 1999) of analogue

formations can be used to construct training images directly (Pringle et al., 2004),

but their relevance depends on the similarity of the analogue and target formation
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geology (Ringrose et al., 1999). It is widely accepted that a lack of suitable analogue

formation data is a significant problem (Cui et al., 1995; Kerry and Oliver, 2007;

Truong et al., 2013). Thus alternatively, training images may be constructed using

process- or object- based models with the input of a geological expert. However, it

can be a costly task, in terms of computation and expert time, to generate a training

image that sufficiently well illustrates the experts’ knowledge of g. Thus one of the

objectives of this thesis is to develop a method for efficiently eliciting multi-point

geostatistical information directly from a geological expert, without the need for this

costly intermediary step.

It is important to note that p(e,g) will not in general be of parametrised form.

This is true even if p(g) is defined parametrically since the multiplication in equation

1.12 will in general not yield a parametrised form. Additionally, it is likely that

p(e,g) is multi-modal in form if p(g) is defined using multi-point geostatistics or

non-parametric two-point methods, since there is not necessarily any connection

between euclidean distance and geological similarity within g ∈ GM (Pham, 2010).

1.5.3 Fundamental problems in determining the posterior

For 2-D or 3-D grids, the number of cells M will often be large, thus the dimen-

sionality of the sample spaces of g and e are usually very large. Fundamentally this

means that computations on these parameter spaces are very intensive (in terms of

the required memory and number of calculations) even for the simplest of geologi-

cal parameters. For example, consider a discrete geological parameter at each cell

describing rock type gi ∈ G = [reservoir, non-reservoir]. This implies that |G| = 2.

However even for small models M > 103, thus using equation 1.1 we have that

|GM | = |G|M > 10301, and more typical industrial scale models have M ∼ 106 − 109.

Furthermore, from the preceding discussions it is clear that neither p(d|e) nor

p(e,g) are likely to be parameterised distributions. Thus in general p(e,g|d) (equa-

tion 1.10) cannot be determined parametrically (George et al., 1993), and addition-

ally the normalising constant p(d) cannot be calculated analytically. However, both

p(d|e) and p(e,g) may be evaluated (up to a constant of proportionality) for a given

realisation of e and g, using equations 1.9 and 1.12, respectively. Thus to charac-

terise p(e,g|d) it might be possible to discretise the entire joint parameter space

GM ×R3M and systematically evaluate and store the value of the numerator of equa-

tion 1.10 throughout this discretisation (and the values retained could then also be
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used to perform numerical integration to obtain p(d)). However, the size of the joint

parameter space GM × R3M is usually very large. Thus such an operation would

be extremely inefficient because it requires exploration of the entire extent of these

large parameter spaces.

There are then two practical approaches for characterising p(e,g|d), the first of

which may be labelled deterministic inversion. Methods of this class seek to obtain

the maximum-a-posteriori (MAP) estimate, which is the realisation of g and e with

maximum posterior probability (Bosch et al., 2012). The MAP can be found by

gradient-ascent methods using the gradient vector (usually calculated numerically)

of the numerator in equation 1.10. Uncertainty can then be evaluated by estimating

the local posterior variance about the MAP estimate (Gubbins, 2004). The second

class of inversion methods may be labelled stochastic since they seek to obtain a set of

representative realisations (samples) from the posterior (Srivastava and Sen, 2010).

For stochastic inversions Monte-Carlo (MC) methods are appropriate since they per-

mit random sampling from the p(e,g|d). Such sampling algorithms require only that

the numerator of the posterior can be evaluated up to a constant of proportionality

(Mosegaard and Sambridge, 2002).

It is clear that the cost of an iteration of a stochastic or deterministic method

is proportional to the cost of evaluating the numerator of equation 1.10, that is

evaluating both p(d|e) and p(e,g). In general both of these distributions can be

costly to evaluate. Additionally, both methods are susceptible to local convergence

problems, thus in general the more multi-modal the posterior the greater the number

of iterations/samples required to obtain a good solution in both cases (Grana et al.,

2011). Thus, roughly-speaking, it can also be said that the cost of inversion scales

with any multi-modality induced in the posterior by the prior and likelihood.

In general, it is desirable to use multi-point geostatistics to specify p(g), since it

can represent the available prior information most accurately. However, in this case

it is likely that p(e,g) will be multi-modal, which will in turn induce multi-modality

in p(e,g|d). Thus this means that the direct estimation of the joint posterior by

deterministic or stochastic inversion methods can be expensive. However, there is

a practical method that reduces the computational cost of inversion yet permits

multi-point geostatistics to be applied. This so-called ‘two-stage’ inversion, explic-

itly splits the problem of posterior estimation into elastic inversion and geological

inversion stages (Bosch et al., 2010). In solving the former inverse problem, gener-

ally a simplified prior distribution is employed which promotes efficient and stable
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inversion (Filippova et al., 2011). However, in solving the latter problem, sophis-

ticated multi-point geostatistics can be used to specify the geological prior. The

methodologies developed for Bayesian seismic inversion in this thesis are made in

the context of this method, thus it is described in greater detail in the next section.

Nevertheless, a number of methods do exist for directly estimating the joint pos-

terior in equation 1.10. González et al. (2007) used a stochastic method to sample

from the joint posterior, where the geological prior was specified using multi-point

geostatistics. However, this prior was not defined in a probabilistic way, and the

stochastic algorithm itself was dependent upon the availability of well data. Another

example of such a ‘single-stage’ algorithm is that of Rimstad et al. (2012), who used

full conditionals to specify a multi-point geostatistical prior, but the conditional de-

pendence within the full conditional distribution (equation 1.13) was limited to only

a small set of neighbouring cells. The method also assumed a linearisation of f(e),

since it can be shown that equation 1.4 is only weakly non-linear in e. The probabil-

ity perturbation method of Caers and Hoffman (2006) is a general method developed

for single-stage inversion, but relies upon some quite restrictive assumptions about

independence between parameters in the model (the so-called ‘tau-model’) for its

derivation.

1.6 Two-stage Bayesian seismic inversion

The joint posterior in equation 1.10 can be split explicitly into elastic and geological

inversion parts (Bosch et al., 2010) by rewriting it using elementary probability

identities as

p(e,g|d) = p(e|d)p(g|e,d) = p(e|d)p(g|e) (1.14)

where the second equality holds since g can only affect d via changes in e, thus once

e is specified, d is redundant in p(g|e,d). Equation 1.14 separates the joint posterior

into an elastic posterior p(e|d) and a geological posterior p(g|e). The former may

be written using Bayes’ rule as

p(e|d) =
p(d|e)p(e)

p(d)
, (1.15)
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where p(d|e) is the elastic likelihood, p(e) is the so-called elastic prior distribution

and p(d) =
∫
R3M p(d|e)p(e)de is the normalising constant.

As with the joint posterior in equation 1.10, in general there is no way to deter-

mine a parametrised elastic posterior because neither p(d|e) nor p(e) are parametrised

distributions, and the dimensionality of the sample space of e (i.e., 3M) prohibits

a systematic exploration of the parameter space. Thus the elastic posterior can

usually only be characterised using deterministic or stochastic inversion techniques,

which scale in cost with the cost of evaluating p(d|e) and p(e), and the degree of

multi-modality induced in p(e|d) by these distributions.

Thus to reduce the computational cost of (deterministic or stochastic) elastic

inversion, a form for p(e) is chosen which has simple structure (i.e., is not multi-

modal) and is computationally cheap to evaluate (Dubrule et al., 1998; Lamy et al.,

1999). For example, it may be assumed to be a Gaussian distribution (Buland and

Omre, 2003b). Such a simplification can be justified since it can be argued that,

a-priori, little is known directly about the distribution of elastic parameters in the

subsurface (except perhaps some bounds on their values and requirements for lateral

continuity). However, the information encapsulated by such a simple p(e) may be

inconsistent with the geological prior information encapsulated by the geological prior

p(g); ideally the elastic prior p(e) would be obtained from the joint prior p(e,g) by

the marginalisation

p(e) =
∑

g∈GM
p(e,g) =

∑
g∈GM

p(e|g)p(g) (1.16)

where the second equality is obtained by substitution of equation 1.12. Thus it is

clear that an arbitrary choice of p(e) is not necessarily consistent with predefined

p(g) and p(e|g) distributions. For example, it is unlikely that a Gaussian elastic prior

p(e) would ever arise naturally if p(g) were defined using multi-point geostatistics

(e.g., equation 1.13).

Thus it is clear that the choice of such a simple elastic prior, whilst promot-

ing efficiency, can represent a significant loss of prior information about the elastic

parameters. Importantly, since determination of the geological posterior p(g|e) is

dependent upon the results of elastic inversion, this can also effect any inferences

made about the geological parameters, regardless of the accuracy of the geological

prior supplied for geological inversion. Thus in this thesis develop an efficient method
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that transforms the results of Bayesian elastic inversion obtained using only a simple

elastic prior p(e) (defined as a Gaussian), to new estimates of e which incorporate

complex (multi-point geostatistical) prior information. However, the method which

we choose to apply is fundamentally computationally expensive, thus we must ap-

ply approximations to it which reduce the accuracy of the final posterior estimate

obtainable by the method.

In two-stage seismic inversion it is usual for the elastic posterior to be determined

using deterministic methods (Francis, 2006), thus a single MAP estimate of e is

determined in the elastic inversion stage. The MAP estimate, denoted ê, is then used

to condition the geological posterior p(g|ê) for geological inversion. The geological

posterior may then be written using Bayes’ rule as

p(g|ê) =
p(ê|g)p(g)

p(ê)
(1.17)

where p(ê|g) is the joint geological likelihood (equation 1.3), p(g) is the geological

prior distribution and p(ê) =
∑

g∈GM p(ê|g)p(g) is the normalising constant. Once

again, there is in general no way to determine a parametrised geological posterior

because neither p(ê|g) nor p(g) are parametrised distributions, and the size of the

sample space of g (|G|M) prohibits a systematic exploration of the parameter space.

Thus again deterministic or stochastic methods must be used to characterise the

geological posterior distribution p(g|ê), whose cost scales with the cost of evaluating

p(ê|g) and p(g).

As explained above, unlike for elastic inversion, the prior p(g) used in geological

inversion is usually defined using multi-point geostatistics (Bosch et al., 2010), and

is thus likely to be multi-modal in form and expensive to evaluate. However, the cost

(of a single iteration) of geological inversion is significantly reduced in comparison to

elastic inversion, since the likelihood p(ê|g) in this case is much cheaper to evaluate

than p(d|ê) (which requires the costly evaluation of the AVA forward physics, f(ê)).

Characterising uncertainty in the geological parameters is a key aim of seismic

inversion for reservoir characterisation, thus it is usually desirable for a set of g

samples from p(g|ê) to be determined (Zhang et al., 2012). Therefore stochastic

methods are typically used for the geological inversion stage. However, the MC

sampling algorithms used for stochastic inversion generally use a correlated sampling

approach. Therefore it is possible that local convergence of the sampler may occur,

and hence any estimate of the geological posterior made using the resulting set of

29



Chapter 1.7 BAYESIAN INVERSION OF SEISMIC DATA

samples may be biased (Belisle, 1998). Thus another objective of this thesis is to

investigate this problem further and to develop an alternative sampling algorithm

which avoids such bias problems.

The two-stage inversion procedure described in this section is useful since it

separates the elastic and geological inversion problems, and enforces an intuitively

acceptable simplification of the elastic prior p(e) to reduce the computational cost of

elastic (and hence overall seismic) inversion, yet retaining the ability to apply multi-

point geostatistical prior information about the geological parameters. However, it

does not offer any way to reduce the computational cost of characterising p(g|ê).

Recently, some effort has been made to do this using so-called analytical Bayesian

inversion, which is to say inversion which returns an estimate of the posterior dis-

tribution (or some closely related probability distribution) which does not require

stochastic methods. Usually these techniques utilize neural networks to perform ge-

ological inversion without the need for iterative sampling methods. Such a method

is described in the next section.

1.7 Analytical Bayesian geological inversion using

neural networks

A so-called neural network can be used to emulate the mapping êi → p(gi|êi), which

can be used to determine the so-called cell-wise geological posterior distribution

p(gi|êi) at each cell i in the grid given the elastic parameter estimates êi at that cell.

A neural network can be viewed as a flexible model, mapping a set of inputs to a

set of outputs (Roth and Tarantola, 1994). Values for a neural network’s adaptable

parameters can be found at relatively high computational expense, by a process

referred to as training (Johansson et al., 1991). Training uses a set of example pairs

of the [gi, êi] parameters drawn from the joint distribution p(gi, êi), to determine

values for the network’s parameters which cause it to emulate the mapping êi →
p(gi|êi). The example [gi, êi] pairs are obtained by first sampling gi ∼ p(gi) (the

prior geological distribution for a single cell in the grid), and then sampling êi ∼
p(êi|gi) (as described in section 1.3). Once trained, the neural network can then

determine the p(gi|êi) distribution corresponding to any êi vector extremely rapidly

and efficiently. Thus this method has been used to efficiently determine p(gi|êi) ∀ i
for large 3-D grids where deterministic elastic inversion has been used to determine
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êi ∀ i (Shahraeeni et al., 2012).

However, the set of p(gi|êi) ∀ i is not a general solution to the geological inverse

problem (equation 1.17). It is a set of independent posterior distributions for each

of the cells in the grid, which can only be a solution to the inverse problem if it is

assumed that p(g) =
∏M

i=1 p(gi) (this can be seen by combining this with equations

1.2 and 1.17 to obtain p(g|ê) = k
∏M

i=1 p(gi)p(êi|gi) = k′
∏M

i=1 p(gi|êi), where k and

k′ are normalising constants). This is incompatible with the general definition of

geological prior information (section 1.3) which includes spatial correlation between

the geological parameters.

Furthermore, an even more serious restriction exists since only one trained neural

network is used to invert êi at each cell (Shahraeeni and Curtis, 2011), this implies

that the same p(gi) distribution is applied within p(gi|êi) ∀ i. Of course, the neural

network could be re-trained for each i with a different p(gi) but this would obviate the

efficiency gains made by using neural network inversion since training is an inherently

costly procedure.

Thus, as it is described here, this neural network inversion method is of limited

use generally in Bayesian seismic inversion. However, in this thesis we will show that,

using Bayes’ rule, the cell-wise prior p(gi) may be efficiently varied within the results

of neural network inversion, thus p(gi|êi) may be determined with p(gi) varying with

respect to i, without having to retrain the neural network. Furthermore, it will be

shown that this so-called prior replacement operation can be used to integrate the

neural network-derived estimates of p(gi|êi) within stochastic geological inversion,

which can incorporate spatial correlation between the parameters gi (i.e., using a

p(g) distribution defined using multi-point geostatistics).

1.8 Outline of the thesis

We now summarise the research topics identified in this introductory chapter and

describe how we address them in this thesis. All developments which we make here

can be applied to the two-stage workflow as described in section 1.6. Figure 1.1

summarises this workflow, and the modifications which we make to it.

In section 1.6, it was noted, for reasons of computational efficiency, that the

elastic inversion part of the two-stage inversion workflow often employs a simple

prior distribution p(e), which may contain only a small amount of the available prior
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information about e. Thus in Chapter 2 we develop a method which transforms

the results of deterministic elastic inversion ê (performed using p(e) defined as a

Gaussian distribution), using a so-called deep neural network function, such that the

new estimates include sophisticated, multi-point geostatistical prior information.

In section 1.7 we described how neural network methods can be used to solve the

geological inversion problem. However, these methods are currently only applicable

under very restrictive assumptions about the geological prior. In Chapter 3 we

develop a so-called prior replacement operation using Bayes’ rule which relaxes the

requirement that p(gi) be constant with respect to i.

In section 1.6 it was stated that Monte-Carlo techniques for stochastic geological

inversion usually generate a correlated set of samples from p(g|ê). Because local

convergence of the sampler is possible, any estimate made of the geological posterior

made using this set of samples is at risk of bias. In Chapter 4 we discuss this problem

further, and develop a so-called recursive algorithm which permits exact sampling

from the geological posterior distribution, and hence avoids such bias problems.

We will also show in that chapter that the prior replacement operation (Chapter

3) permits the use of neural network inversion within this, and other, stochastic

geological inversion methods (thus relaxing the requirement that p(g) =
∏M

i=1 p(gi)

for the application of neural network inversion to geological inversion).

In section 1.5.2 it was described how training images are used to extract statistics

with which the geological prior p(g) can be specified and hence used in inversion.

However, appropriate training images often do not exist for a given inversion problem.

In this case appropriate training images may be generated by geological experts.

However, this process can be costly and difficult. Thus in Chapter 5 we develop

a new elicitation method for obtaining the statistics reliably and directly from a

geological expert, without the need for training images.

Each of Chapters 2-5 contains a discussion of the method(s) developed therein.

Additionally, the implications of these results for Bayesian seismic inversion in gen-

eral are discussed in Chapter 6. Chapter 7 lists the conclusions that can be made

based on the content of this thesis. Appendices A-D contain additional content in

support of the main body of work in the thesis.
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Figure 1.1: The so-called ‘two-stage’ workflow for Bayesian seismic inversion, which is assumed
throughout this thesis and to which we develop improvements. The elements of the workflow
which we investigate are annotated in red. Note that k represents the normalising constant in the
geological posterior here.
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Chapter 2

Improving elastic inversion results

using deep neural networks

2.1 Overview

In section 1.6 we described how, for reasons of computational efficiency, most elastic

inversion methods do not implement all available prior information about e. Thus in

this chapter we develop a methodology which aims to transform the estimates of e

made using deterministic elastic inversion ê, which are constrained only by a simple

two-point geostatistical prior model (a Gaussian), to higher resolution estimates

containing sophisticated multi-point statistical prior information.

2.2 Introduction

Roughly speaking, our method seeks to learn the mapping, using a neural network

function, between the results of deterministic elastic inversion, denoted ê, and the

true earth elastic parameters, denoted e. Such a mapping can then be applied to

ê, obtained by inverting real AVA-type data d collected over a region of interest,

to yield an estimate of e for that region. To learn such a mapping we first specify

a prior probability density function (PDF) p(e), which accurately represents our

prior knowledge of e. This PDF is used to generate a large number of possible

realisations of e. Corresponding AVA-type data d is then generated using the AVA

forward physics (section 1.4), and this is then inverted using deterministic inversion

to obtain estimates ê. Thus a set of synthetic ‘example’ pairs of e and ê is obtained,
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and this constitutes a so-called training dataset. This dataset is used to estimate

the parameters of a neural network function which cause that function to emulate

the desired mapping ê→ e.

Neural networks were introduced in section 1.7 for solving the geological inverse

problem repeatedly, in isolation at single cells in the model grid. As described there,

a neural network is a function which can be used to emulate any mapping between an

input and an output variable (Bishop, 1995). Similar previous applications of neu-

ral networks to AVA-type data have applied limited prior geological information to

inversion of zero-offset seismic data for facies classification (Caers, 2001). Recent de-

velopments in neural network theory may now allow us to improve upon such results;

so-called deep neural networks have become feasible to train for regression problems

(Hinton and Salakhutdinov, 2006; Parviainen, 2010). These network functions have a

more complex topology than networks used previously (e.g., Caers, 2001; Shahraeeni

et al., 2012), which permits mappings to be learned more efficiently (Erhan et al.,

2010) and with less sensitivity to noise in the input data (Vincent et al., 2010).

Importantly, the deterministic elastic inversions required in our method need not

contain all of the prior information which is available since accurate prior information

is applied by the neural network, which is trained to apply the prior information in

the training dataset. Thus we are free to use a simple (henceforth ‘low-fidelity’) prior

distribution (such as Gaussian) for deterministic elastic inversion, which need only

permit efficient and stable elastic inversion. Furthermore, to construct a training

dataset for the neural network we need only be able to sample from a (henceforth

‘high-fidelity’) prior distribution which accurately represents our prior knowledge

about e: the PDF does not need to be constructed explicitly/parametrically, but

may nevertheless contain sophisticated (multi-point geostatistical) prior information.

For clarity, we discuss the notation used in the rest of this chapter below, before an

outline of the practical implementation of the new method, and the rest of this

chapter, is given in section 2.4.

2.3 Notation

It should be noted that the definition of e here as the true earth elastic parameters

is consistent with the Bayesian definition of this vector in Chapter 1 (section 1.2)

as a random vector. Strictly-speaking, however, it does imply that the mapping we
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obtain should be probabilistic, which is to say we should obtain the mapping between

the deterministic elastic inversion results and the elastic posterior distribution (i.e.,

ê → p(e|d)). This is not a trivial task, and in the following we will actually derive

a mapping which is approximate in a number of respects.

One of these approximations is that the neural network, written q, is trained to

emulate a certain mapping which is applied recursively down a single trace of the

deterministic elastic parameter estimates located at a given lateral position x = [x, y]

in a subsurface model grid. Thus we consider a strictly one-dimensional recursive

operation which is unable to enforce information about the lateral variation of the

elastic parameters (e.g., about lateral correlation). Ideally, we would define q to act

as a three-dimensional (3-D) recursive operator which can apply such information to

a 3-D grid, however we have chosen the 1-D limitation to reduce the computational

costs and practical difficulties associated with training deep neural networks (Bengio,

2012).

Since the the operation which we apply is 1-D, we will only consider a 1-D grid

in the derivation of q. Thus in this chapter, the vectors e, d and ê now represent

quantities down a single trace (i.e., down the z direction) only, or equivalently e = ex,

d = dx and ê = êx where x = [x = 1, y = 1]. Thus the notation ez is used to refer

to an elastic parameter vector at the cell with vertical coordinate (or equivalently

index) equal to z, and eji = [ei, ei+1, ..., ej] is used to represent all elastic parameter

vectors (in a single trace) in cells with z coordinates (or indices) between i and j

(inclusive). This notation also applies to ê and d. However, we will demonstrate the

method by repeatedly applying the 1-D operation to all traces at different lateral

positions within a real 3-D grid of data, at which point we shall use the x coordinate

to differentiate between lateral positions (i.e., we will apply the operation to êx at

all x positions in the grid).

Otherwise, in the most part, the notation used in this chapter is in agreement

with that used in Chapter 1, and where deviations exist they are noted in the text.

However, a summary of the notation used in this chapter is provided in Appendix

H.1 for reference.
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2.4 Outline of the method

To outline the method we begin by supposing that we have obtained some AVA-type

data dr corresponding to the true elastic parameters down a trace at some lateral

position, which we refer to as er, where the superscript r is henceforth used to denote

real (as opposed to synthetic) quantities. Our method of estimation for er (i.e.,

including the multi-point geostatistical information) then comprises the following 10

steps (see Figure 2.1):

(1) Define a ‘low-fidelity’ prior: Define a prior PDF pL(e) which is mono-modal

and cheap to evaluate and thus promotes computationally efficient elastic inversion

(i.e., a Gaussian).

(2) Deterministic inversion of real AVA-type data: Perform deterministic

inversion of dr using the low-fidelity prior pL(e). The results are written êr, where

ˆ denotes an (MAP) estimate and r implies that it is made using the real data.

(3) Define a ‘high-fidelity’ prior: Define a prior PDF pH(e) which accurately

represents our prior knowledge of e, where ideally er ∼ pH(e). This PDF need not

be constructed parametrically, since it need only be sampled from in step 4.

(4) Generate synthetic elastic realisations: Sample from pH(e) to generate

B trace realisations of the elastic parameters, es ∼ pH(e), where the superscript s

implies that these realisations are synthetic.

(5) Generate synthetic AVA-type data: Using the forward physics and the B

es trace realisations from step 4 generate the corresponding B synthetic AVA-type

data ds = f(es) traces.

(6) Deterministic inversion of synthetic AVA-type data: Invert all B syn-

thetic data ds traces from step 5 deterministically to obtain B traces of elastic

parameter estimates ês. For consistency, the deterministic inversions here use the

same pL(e) from steps 1 and 2.

(7) Form the training dataset: From the B pairs of es (step 4) and ês (step 6)

traces extract the training dataset (pairs of input and output) which will be used to

train q to emulate the desired mapping (to be used in the 1-D recursive operation).

(8) Define the neural network q: Choose a suitable topology (i.e., parametrisa-

tion) for q which will allow it emulate the desired mapping (to be used in the 1-D

recursive operation).
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(9) Train the neural network q: Using the training dataset formed in step 7,

train q (step 8) to emulate the mapping which upon its recursive application to ê

will approximately do the transformation ê→ e.

(10) Apply the recursive operation using q: Apply q (trained in step 9) within

the 1-D recursive operation to do the approximate transformation ê→ e.

In the following sections we describe each step of the methodology in greater

detail. We have already described the forward physics relating the AVA-type data

to the subsurface elastic parameters (steps 2, 5 and 6) in section 1.4. However,

in section 2.5 we will describe the specific deterministic inversion procedure using

the low-fidelity prior (steps 1, 2 and 6) in detail. We then precisely define the 1-D

recursive operation, and the particular mapping within this which is emulated by the

neural network function q in section 2.6. We then discuss neural networks in general

and the training and topology of q specifically (steps 7, 8, 9 and 10) in section 2.7.

It must be noted that although the method developed here is strictly 1-D, this

does not mean that the recursive operator is not useful for 3-D (or 2-D) grids; the

same recursive operation may be applied repeatedly at different lateral positions x

within a (2-D or 3-D) grid, so long as the (1-D) prior information applied by the

operator is valid ∀ x in the grid. Thus, in section 2.8 we apply the methodology

(steps 1-10) to real data where we provide an example of how a high-fidelity prior

PDF (steps 3 and 4) can be constructed, and sampled-from, for a given geological-

setting. The real data comprises a large 3-D grid of data, where at each lateral

position (i.e., trace) in the grid we apply the same 1-D recursive operation.

2.5 Deterministic seismic inversion

In order to evaluate the elastic posterior in equation 1.15, and hence perform de-

terministic inversion, we must define the elastic prior PDF. A simple low-fidelity

prior PDF pL(e) is used for deterministic inversion here in order to facilitate efficient

deterministic elastic inversion. Thus we choose a Gaussian PDF defined as

pL(e) = (2π)−
k
2 |Σe|−

1
2 exp

(
−1

2

(
−(e− e0)TΣe

−1 (e− e0)
))

(2.1)

where e0 is the initial (or mean) model, Σe is the prior covariance matrix and k is

the dimensionality of the e vector. Σe describes the prior spatial correlation of the
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(1) Define the low-fidelity prior  Lp e  

(3) Construct high-fidelity prior,  Hp e  

 

(5) GenerateB synthetic AVA-type data traces,  ss d f e  

 

 

(10) Apply q  via the 1-D recursive operation to 

(approximately) do the mapping ˆ
r re e  

(6) For the B synthetic instances of 
s
d  do deterministic inversion 

i.e., ˆs sd e  using the low-fidelity prior  Lp e  

(2) Estimate real elastic parameters by deterministic inversion 

of real data ˆr rd e  using the low-fidelity prior  Lp e  

(4) Generate B synthetic trace realisations,  ~ H

s pe e  

 

(7) Construct training dataset from the B instances of  ˆ ,s s  e e  

(8) Define the neural network mapping q  

(9) Train q  using the training dataset 

Figure 2.1: Outline of the methodology for estimating er from dr, where numbers refer to the
chronological order and arrows imply dependence between steps.
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ez variables vertically down a trace at a single lateral location. It can be constructed

from a variogram model. A suitable low-fidelity choice for e0 is a low frequency

model (i.e., a model which expresses only large-scale, general depth-trends in the

subsurface). This can be obtained by applying a low-pass filter to local well-log

data of e if available, or by using known regional depth trends. Similarly Σe can be

constructed using an empirical variogram calculated from well-log measurements of

e.

In deterministic inversion we aim to find the MAP value by maximising equation

1.15. Substituting equations 1.6 and 2.1 into equation 1.15, it can be shown that

this is equivalent to the minimisation

ê = arg min
ê

(
‖f(ê)− d(e)‖Σd

+ ‖ê− e0‖Σe

)
, (2.2)

where ê and e are the estimated and true elastic parameters, respectively, and the

notation ‖v‖C = vTC−1vT . Note that in the above equation d(e) should be inter-

preted as the observed AVA-type data. It can be shown (see e.g., Gubbins, 2004)

that the estimate may be written as the matrix multiplication of the true elastic

parameters and the so-called resolution matrix as

ê = (ATΣ−1
d A + Σ−1

e (ATΣ−1
d A))e. (2.3)

where A = SṘ(ê), in which S is the wavelet block matrix (see section 1.4) and

Ṙ(ê) is a matrix containing the derivatives of the reflectivity vector R (see section

1.4) with respect to e, evaluated at ê. From the resolution matrix we see that each

element of the estimate vector ê is a linear combination of a number of elements of

the true e vector. The presence of S in equation 2.3 implies that the wavelet vectors

have a strong influence on the vertical range of this linear combination. Generally

speaking, this means that elastic parameters which are close together down a trace

are harder to resolve than those further apart.

2.6 The recursive operation

We now define the recursive 1-D operation applied, and the particular mapping

within this which is approximated by the neural network function q. It is well-

known that the resolution matrix in equation 2.3 cannot be inverted since there
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is not a unique mapping between the estimates ê and the true elastic parameters

e (which in the Bayesian interpretation is a random vector). We can nevertheless

write the relationship as a probability distribution, p(e|ê), which can be rewritten

using conditional probability distributions as

p(e|ê) =
T∏
z=1

p(ez|ez−1
1 , ê). (2.4)

where the notation eji = [ei, ei+1, ..., ej] is used. We can approximate equation 2.4

by limiting the dependency within the conditional probability distributions on the

right hand side to some characteristic depth-lag, denoted λ, giving

p(e|ê) ≈
T∏
z=1

p(ez|ez−1
z−λ, ê

z+λ
z−λ). (2.5)

Dependency in the resolution matrix (equation 2.3) is controlled by the wavelet

vectors specified in S. Furthermore, we assume henceforth that the effective range

of geological correlation is less than the wavelength of the wavelet. Thus we propose

that a reasonable choice for λ is to set it equal to half of the period of the longest

of the angle dependent wavelets [wnear,wmid,wfar], and we use this approximation

henceforth.

Equation 2.5 can be sampled from using sequential sampling for z = 1, 2, ..., Z;

such sampling can therefore be thought of as a recursive operator. Much work

has been done on using neural networks to determine probabilistic mappings like

[ez−1
z−λ, ê

z+λ
z−λ] → p(ez|ez−1

z−λ, ê
z+λ
z−λ) in equation 2.5 (e.g., Bishop, 1994; Barber and

Bishop, 1998). However, such methods typically require networks with very large

numbers of free parameters (in order to characterise the posterior distribution over

the full extent of the parameter space). Therefore in order to ease the computational

burden of training we do not consider determining the full probability distribution.

Instead we use the neural network function q to emulate a related injective mapping,

defined as

[ez−1
z−λ, ê

z+λ
z−λ]→ E[ez|ez−1

z−λ, ê
z+λ
z−λ]. (2.6)

where E[] is the expectation operator. Then the 1-D recursive operation is defined by

calculating this mapping (equation 2.6) for z = 1, 2, ..., Z, where after calculation at
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z we set ez = E[ez|ez−1
z−λ, ê

z+λ
z−λ], as demonstrated in Figure 2.2. Not all of the required

êz or ez input values may exist at the beginning or end of a trace, where z−λ < 0 or

z+ λ > Z respectively (see Figure 2.2). For such positions we train neural networks

to emulate mappings with modified topology to accommodate the ‘missing’ inputs

(we do not explain these networks further since they are obtained and applied in the

same way as q).

Note that each dependency (i.e., arrow) in Figure 2.2 describes the dependency

of all three elastic parameters at depth z on all three of the elastic parameters at

the conditioning depths. Thus the values of [IP , IS, ρ] are predicted simultaneously

and should be consistent with one another at depth z. Additionally, the recursive

application of E[ez|ez−1
z−λ, ê

z+λ
z−λ] down a trace is not equivalent to calculating E[e|ê],

because the directional nature of its application will mean that each estimate of ez is

inherently biased. Nevertheless, it can be used to ensure that a geologically reason-

able sample is obtained because the conditional expectation ensures vertical spatial

dependency between the elastic parameter estimates. This is in contrast to what

would be obtained if we instead estimated E[e|ê]; in this case each elastic parameter

estimate at each z could be determined independently of all others following the laws

of expectations, and thus geological continuity would not be ensured.

For later convenience we define two vectors u = [ez−1
z−λ, ê

z+λ
z−λ] and v = ez|ez−1

z−λ, ê
z+λ
z−λ,

such that u → E[v]. Since ez and êz each have three elements, the number of ele-

ments in u and v are

3× (λ+ (1 + (2× λ)) and 3, (2.7)

respectively. Given the definition of u and v, the pair of vectors [ês, es] for a single

trace, can yield numerous realisations of pairs of these vectors, which we write [us,vs]

where the s superscript indicates that this is synthetic data. Thus for convenience

we define the operation Q, which extracts

Z − 2λ (2.8)

instances of the [us,vs] pair from a single [ês, es] pair of traces (where the number

of instances which may be extracted from a single trace is limited by the size of λ

because of the finite length of traces, as discussed above). These vector pairs will be

used to form the training dataset for the neural network mapping.
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As stated above we use a neural network q to approximate equation 2.6. Thus

us constitutes a realisation of the input of q but vs is not a realisation of the desired

output variable, which is the expectation E[vs]. However, we will show later that a

training dataset comprising pairs of [us,vs] is sufficient to induce the neural network

to emulate the desired mapping q : u→ E[v].

2.7 Neural networks

2.7.1 Topology of neural networks

A neural network is a function whose structure, when expressed graphically, is similar

to the physical arrangement of biological neurons. They comprise L + 1 layers of

nodes within which each node is connected by edges (connecting lines) to all of the

nodes in directly adjacent layers, but there are no edges between nodes within a

layer. Each layer has K l variable nodes where l ∈ [0, ..., L] refers to the layer number

(it is not an exponent). Each node is associated with a variable ali, which is the

variable associated with the ith node of the lth layer. Each edge is associated with a

weight wlij, which is the weight associated with the edge connecting the ith node of

the l − 1th layer to the jth node of the lth layer. Figure 2.3 illustrates such a neural

network structure.

Additionally, each layer contains a so-called bias node, which is the zeroth node

in a layer and is associated with variables al0 and weights wl0j (thus the total number

of nodes in a layer is KL+1). Bias nodes serve only to supply a weighted constant to

nodes in the layer above, thus they do not have any connections to the nodes in the

layer below, and their associated variables are constant, i.e., al0 = 1 ∀ l ∈ [0, ..., L].

Thus note that, by definition, the bias node in l = L is redundant and is henceforth

ignored. The vector notation al = [al0, ..., a
l
Kl ] is used to denote the set of all variables

(nodes, including the bias) in layer l. A shorthand can be used to describe the number

of layers and nodes (including biases) in a network, e.g., 3− 3− 4− 1 describes the

network in Figure 2.3.

By definition, information in a neural network passes ‘upward’ only from the

so-called input layer l = 0 to the output layer l = L. All intermediate layers are

referred to as hidden layers. The variables (except the constant biases) in each layer

(except the input) can be defined as a function of the weighted variables (including
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Figure 2.2: The recursive operation applies a mapping, approximated by the neural network func-
tion q, recursively for z = 1, ..., Z down a trace at a given lateral position to predict ez ∀ z. At each
z, q returns the expected value for ez given the results of deterministic seismic inversion ê and the
previously predicted ez values down the trace. ez is then set to the expected value, such that it is
used as input to q for predicting ez+1 and so forth. The vertical dependency of q is limited to λ
cells/samples above (for e and ê) and below (for ê) the current cell/sample, z.
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Figure 2.3: A neural network with 2 layers of hidden nodes. In total there are 4 layers of nodes
(thus L = 3). The ith node of the lth layer is associated with the variable ali, where l ∈ [0, ..., L]
is the layer index. Edges (connecting lines) connect the ith node in the (l− 1)th layer with the jth

node in the lth and are associated with a weight wl
ij . All layers of nodes have an additional bias

node (i = 0) whose associated variable is set constant (i.e., al0 = 1 ∀ l ∈ [0, ..., L]) and thus has
no connecting edge to the nodes in the layer below. Note that in the output layer (l = L) the bias
node is redundant and is ignored (see equation 2.9).

51



Chapter 2.7 BAYESIAN INVERSION OF SEISMIC DATA

the biases) in the layer directly ‘below’, that is

alj = g

Kl−1∑
i=0

wlija
l−1
i

 ∀ l ∈ [1, ..., L] , j ∈ [1, ..., K l], (2.9)

where the summation is over the K l−1 + 1 nodes in the (l− 1)th layer, which connect

to the jth node in the lth layer. The above applies for all layers except the input

layer for which we must supply independent values (i.e., the input vector) for all the

variables except the constant bias node. For example, in our case the input vector

is u, thus we write a0
\0 = u, where the \0 subscript implies the set of all variables in

the first layer except the bias. The neural network function then predicts the output

vector aL, by calculating equation 2.9 for each layer successively, until the output

layer L. Thus ultimately the variables in the output layer are a function of the

input variables and the weights, hence we may write our neural network function as

q(u; W) = aL(u; W), where W is a matrix storing the weights’ values as Wi,j,l = wlij.

The function g in equation 2.9 is the so-called activation function (Bishop, 1995).

This could be different for every node but we assume that all such functions are the

sigmoid function, defined as

g(x) =
1

1 + e−x
(2.10)

for a scalar input x. It can be shown that any function can be approximated to

arbitrary accuracy with a neural network with sigmoidal activation functions with

at least one layer of hidden nodes, and a sufficient number of nodes in those hidden

layers (see e.g., Bishop, 1995, pp.128-132). In general, the more complex the function

the greater the number of hidden nodes required to emulate that mapping.

2.7.2 Training of neural networks

We wish to obtain the neural network such that q(u; W) : u → E[v]. Suppose

that we have a network with certain topology, i.e., number of hidden layers and

nodes within those layers (the size of the input and output layer is dictated by

the length of the u and v vectors, respectively). To induce such a network to

emulate the desired mapping we must obtain appropriate values for this network’s

weights W via training. This uses the training dataset, which in this case is a set
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of N ‘example’ pairs of u and v drawn from the joint distribution p(u,v), written

[usi ,v
s
i ], i = 1, 2, ..., N . As explained above we can use the operator Q to obtain

such pairs from [ês, es] pair(s). We can then estimate appropriate values for W by

minimising a sum-of-squares error function, defined as

EN =
N∑
i=1

(vsi − q(usi ; W))2, (2.11)

with respect to W, where it should be understood that vs is a sample of v from

the training dataset, whereas q(usi ; W) is the output of the neural network for a

given set of weights W, and input equal to the corresponding (ith) input vector usi in

the training dataset. For a given network topology and training dataset, minimising

equation 2.11 yields the maximum likelihood value for W. This minimisation is

performed using iterative gradient-descent where the gradients (with respect to W)

are calculated with the so-called back-propagation technique (Appendix B).

It can be shown (Bishop, 1995) that if we have N = ∞ and a suitably large

number of hidden nodes in our network, then minimisation of equation 2.11 yields a

set of weights W which induce the neural network to output the mapping q(u; W) :

u→ E[v] exactly. In practice, the training dataset consists of a finite number of [u,v]

pairs, limited by the amount of data which can be feasibly created, and incorporated

into training. Furthermore, choosing a ‘suitably large’ number of hidden nodes is

not a trivial problem: there must be enough nodes to give the neural network model

sufficient flexibility to fit the variation in E[v], but not so much as to induce the

neural network to fit noise (or stochastic variation) in the training data (i.e., ‘over-

fit’). In the next section we will consider how these two problems may be mitigated

and how W should be determined in practice.

2.7.3 Generalisation

Since we cannot have N =∞ it is necessary for us to consider the generalisation of

the neural network, which refers to the ability of q(u; W) to correctly predict E[v]

for a u vector which was not in the training dataset (Bishop, 1995, p.2). Generally

speaking, q(u; W) will perform the mapping relatively poorly for u vectors which are

distant from the input vectors in the training dataset used to determine W (and vice-

versa). The error surface in equation 2.11 may contain many local minima to which

gradient-descent may converge, and furthermore the value of equation 2.11 for some
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W is not directly proportional to the generalisation performance of q(u; W), i.e., a

lower training data misfit does not necessarily guarantee better generalisation. Thus

in practice we must be able to quantify the generalisation performance of q(u; W)

in order to choose the best values for W. To do this, a so-called validation dataset is

constructed in exactly the same way as the training dataset, but with different [u,v]

pairs (Prechelt, 1998a). This can then be used to calculate the so-called validation

error for given W, which is simply equation 2.11 evaluated for the validation dataset,

rather than the training dataset. This can then be used to compare the performance

of different values of W obtained from training runs with different initial values for

W (or training parameters - see Appendices B and C).

Because the training dataset comprises a limited number of samples from the

probability distribution p(u,v), it may not fully sample the stochastic variation in v.

Therefore q(u; W) may fit the stochastic variation in v rather than reproducing the

true variation in the expected value E[v]. Such over-fitting will reduce generalisation

performance. It is usually observed that during gradient-descent the validation error

initially decreases with iteration number, but after a certain number of iterations the

validation error begins to increase (Prechelt, 1998b). This may be caused by training,

having initially fitted the large-scale variation of the expected value, proceeding to fit

small-scale stochastic variation. Thus using the validation error one may decide to

terminate training before such ‘noise’ is fitted, a technique known as early-stopping,

allowing us to retain W with best generalisation performance.

Furthermore, if we monitor the validation error with iteration (of gradient-ascent)

then the choice of the number of hidden nodes is easy to make: we may simply choose

an arbitrarily large number of hidden nodes (i.e., beyond what is deemed necessary

by the number of training instances available to constrain the corresponding number

of weights - see Bishop (1995, pp.128-132)) and use early-stopping to prevent over-

fitting. Indeed, it is often observed that choosing a seemingly excessive number of

hidden nodes aids generalisation by effectively introducing smoothing to the neural

network output (Wang et al., 1994; Sarle, 1995).

2.7.4 Deep neural networks

The use of so-called deep neural neural networks, which are networks with more than

one hidden layer of nodes, can improve generalisation performance greatly (Hinton

and Salakhutdinov, 2006; Bengio et al., 2013). The fundamental advantage of deep
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neural networks is that they can emulate complex mappings with fewer weights,

since having numerous hidden layers permits a series of non-linear transformations

to be applied to the input. Thus potentially less training data is required to train

these networks (H̊astad and Goldmann, 1991; Bengio and Delalleau, 2011). For a

given training dataset, it is often noted that deep networks have better generalisation

in classification (Ranzato et al., 2007) and regression problems (Parviainen, 2010)

than networks with one hidden layer (but with equal numbers of weights, i.e., free-

parameters, in the networks).

Furthermore, deep neural networks are often defined with a so-called bottle-neck

layer, which is a layer with fewer nodes, or dimensions, than the input. This layer

then represents a lower dimensional representation of the input. Thus, after training,

it is hoped that this lower dimensional representation contains the most important

features of the input for predicting the output, and any noise or superfluous infor-

mation in the input will be removed (van der Maaten et al., 2009). Thus bottle-neck

layers are useful for promoting good generalisation and reducing over-fitting, albeit

at the risk of losing information by reducing the dimensionality of the input (Erhan

et al., 2010). Such networks have recently been used successfully in a geophysical

context to reduce the dimensionality of seismological data by Valentine and Trampert

(2012).

Unfortunately, unlike networks with one hidden layer, deep neural networks are

difficult to train and as such have not been used extensively in practice until re-

cently (Bengio, 2012). The complex structure of deep networks means that naively

using back-propagation often results in convergence in the weights’ values to a local

minima in equation 2.11 which yields a poor approximation of the desired mapping

(Hochreiter, 1998). However, it has been shown recently that performing so-called

pre-training (or conditioning) to determine initial values for W, before attempt-

ing to minimise equation 2.11, can yield estimates for W which perform well (i.e.,

q(u; W) performs the mapping accurately and exhibits good generalisation). There

are numerous existing pre-training approaches (see e.g., Hinton et al., 2006; Vincent

et al., 2010; Valentine and Trampert, 2012), but here we use the so-called stacked

denoising-autoencoder method (described in Appendix C), which has been shown to

be effective for regression problems (Parviainen, 2010).
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2.8 Application to a real dataset

We now apply our new method of elastic inversion to real data for the Laggan gas

field, located in the West of Shetland hydrocarbon province. The reservoir is in

Paleocene strata and consists of spatially extensive turbidite lobes. There are three

such lobes each approximately 3km wide, 6km long and 10m thick. These lobes form

homogeneous fine-grained sandstones which are referred to as the ‘A’, ‘B’ and ‘C’

sands. The sand units are separated by shale units, themselves thought to originate

at the fringe of turbidite lobes or as channel levees (Gordon et al., 2010).

From the results of a seismic survey, AVA-type data had been produced at each

lateral position in a 500× 500 grid over the reservoir. Thus we had 2.5× 105 traces

of real AVA-type data: drx, where we now use x = [x, y] to differentiate between

traces at different lateral positions and x ∈ [1, ..., 500] and y ∈ [1, ..., 500]. For each

trace of real AVA-type data Z = 150, thus we defined a 3-D subsurface grid with

X = 500, Y = 500 and Z = 150. The units of the vertical dimension z were

vertical travel time, with each cell spanning 1ms, and the lateral dimensions x and

y were spatial, with each cell spanning 10m. Z = 150 for all traces (of both real and

synthetic quantities) used henceforth in this application of the method (however, for

purposes of presentation, some figures will crop the extremities of these traces). We

also obtained well data and a geological interpretation of the reservoir. Three wells

(wells 1-3) intersect the reservoir, all of which have vertical or near-vertical well-bore

trajectories. The outline of the reservoir, the data grid (i.e., all x positions) and

position of the wells is shown in Figure 2.4.

Thus our aim was to obtain a (single) neural network mapping q which could

be applied (via the recursive 1-D operation) to the results of deterministic elastic

inversion at each lateral position where AVA-type data existed (over the Laggan

field), i.e., ∀ x. To do this we followed the general 10-step workflow as outlined in

section 2.4:

(1) Define the low-fidelity prior: The same Gaussian low-fidelity prior pL(e)

(equation 2.1) was used for both the deterministic inversion of each drx for all x (step

2), and of the synthetic AVA-type data (step 6). Thus e0 was formed by applying

a low frequency filter (a Butterworth filter with cut-off frequency ωC = 25Hz and

slope parameter n = 4) to measurements of e made at well 3 to obtain a general,

regional depth trend. Σe was derived from a variogram calculated from the same
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Section 1 

GWC 

Field boundary 

Structural dip 

direction 

Well 1 Well 2 

Well 3 
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N 

AVA-type 

data grid 

Section 2 

Section 3 
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y 

1 

500 
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Figure 2.4: A map showing the outline of the Laggan gas field (red line). The gas-water contact
(GWC) is shown at the base of the reservoir (with respect to its structural dip) by a black stippled
line. The extent of the grid of AVA-type data traces, dr

x, where x = [x, y] and x ∈ [1, ..., 500] and
y ∈ [1, ..., 500], is shown by a black-dotted line. Cross-sections 1-3 are shown intersecting wells 1-3,
respectively.
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well measurements of e.

(2) Deterministic inversion of the real AVA-type data: Estimates êrx ∀ x were

obtained by solving (by gradient-descent) equation 2.2 using drx ∀ x and pL(e) ∀ x

(from step 1). The matrices Σd and S (required to calculate f(ê) and hence solve

equation 2.2) were determined from well data, and were assumed constant for all

lateral positions x (and are retained for use in steps 4 and 5).

(3) Define the high-fidelity prior: To define pH(e) we used the geological in-

terpretation of the reservoir to build a 1-D model. We did not expect to be able

to resolve the thin ‘A’ and ‘B’ sands so we assumed these, and the separating shale

layer, to be a single unit. Thus our model comprised: two sand layers (an ‘A+B’ and

a ‘C’ layer), one separating shale layer, and an overburden and basal shale layer. We

generated B = 3000 trace realisations of this 1-D facies model, where the thicknesses

of the layers varied according to a normal distribution, whose mean and covariance

was determined from the layer thicknesses measured down the wells.

(4) Generate synthetic elastic realisations: Histograms describing the proba-

bility of the IP , IS and ρ values in each facies were determined from the well-log

data (Figure 2.6). For each of the B trace realisations of the 1-D facies model,

these were sampled from to generate B traces of IP , IS and ρ. Thus we obtained

esb ∼ pH(e), b ∈ [1, ..., B]. It should be noted that correlation was introduced within

both the layers’ thicknesses (step 3) and the elastic parameters with respect to the

b index. This allows us to form visually understandable ‘cross-sections’ of the syn-

thetic facies and elastic parameters (Figures 2.5 and 2.7, respectively) by plotting the

traces with respect to b. However, this is for aesthetic effect only: this 2-D lateral-

correlation information cannot be encapsulated, or applied, by the 1-D recursive

operation (q) in step 10.

(5) Generate synthetic AVA-type data: Calculate dsb = f(esb), b ∈ [1, ..., B],

using S and Σd from step 1 in equation 1.6. The resulting cross-sections of ‘near’,

‘mid’ and ‘far’ angle-stack data are shown in Figure 2.8.

(6) Deterministic inversion of synthetic AVA-type data: Solve equation 2.2

for all dsb, b ∈ [1, ..., B], where for all b the same pL(e) PDF (from step 1) is used.

The minimisation (i.e., gradient-descent) requires evaluation of d = f(ê) using S and

Σd from step 1 in equation 1.6. The results of inversion of each trace êsb, b ∈ [1, ..., B]

are shown in Figure 2.9.

(7) Define the training dataset: From steps 3 and 5 we have the set of pairs of
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‘A’+’B’ sand Overburden/base ‘C’ sand Intermediate shale 

b
1500 30001000500 2000 2500

z 

Figure 2.5: The set of B = 3000 1-D facies models used to generate the training dataset for q plotted
with respect to b. Each trace is generated by realising the ‘A’+‘B’ sand layer, a separating shale
layer, the ‘C’ sand layer and the overburden and basal shale layer. The thicknesses of the reservoir
layers are realised from a normal distribution whose parameters are determined from well data. In
order to generate an understandable geological image (i.e., a 2-D cross-section), correlation in layer
thicknesses has been enforced with respect to b. However, the recursive operation (application of
q) cannot learn, or apply, this lateral correlation. Note that the traces in this image have been
cropped to permit magnification of the reservoir layers.

vectors (traces) [êsb, e
s
b], b ∈ [1, ..., B]. The training dataset is generated by applying

Q to each of the B = 3000 pairs in this set. λ is set equal to half the period of

the longest wavelet (‘far’) in S which was 42ms, hence λ = 21. Substituting λ

and Z = 150 into equation 2.8 gives the number of training pairs which can be

extracted from the single pair of vectors [êsb, e
s
b]. Thus multiplying this by B gives

the total number N of input-output pairs available to form the training dataset:

[usi ,v
s
i ], i = 1, 2, ..., N where N = 3000× (150− 42) = 324, 000.

(8) Define neural network q: The dimension of the input and output layers

are equal to those of u and v, respectively. Substituting λ into equation 2.7, the

dimensions of u and v are (43 + 21)× 3 = 192 and 3, respectively. We specified the

topology of q to be deep and to have a bottleneck layer, with the topology expressed

in short-hand being 193− 500− 100− 500− 3 (including biases).

(9) Learn the neural network q: After applying pre-training (Appendix C)

to obtain an initial W matrix, 200 iterations of gradient-descent were applied to

minimise equation 2.11 with respect to W. 100 such training runs were made (each

with a different random seed). A validation dataset was generated (in the same

way as the training dataset above but with B = 200), and thus the validation error
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Figure 2.6: Histograms showing the distribution of the elastic parameters IP , IS and ρ in (a) the
shale layers (basal, separating and overburden units), and (b) in the sandstone layers (‘A’, ‘B’ and
‘C’ units).
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Figure 2.7: The set of B = 3000 1-D synthetic elastic parameter models esb, b ∈ [1, ..., B]. This data
forms part of both the output and input portion of the training dataset for q. It was generated
by populating each of the layers in each of the 1D facies models (Figure 2.5) with the elastic
parameters, sampled from histograms derived from well data (Figure 2.6). In order to generate
an understandable geological image (i.e., a 2-D cross-section), correlation in the elastic parameter
values has been enforced with respect to b. However, the recursive operation (application of q)
cannot learn, or apply, this lateral correlation.
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Figure 2.8: The synthetic AVA-type data generate by applying the AVA forward function (equation
1.6) to each of the 1-D elastic parameter model traces in Figure 2.7, i.e., ds

b = f(esb), b ∈ [1, ..., B],
where ds

b comprises ‘near’ (6−16◦), ‘mid’ (16−26◦) and ‘far’ (26−36◦) angle-stack data. This data
is used to determine the synthetic deterministic inversion results which form part of the training
dataset for q. Note that the gray-scale represents normalised amplitude in each section.
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(Figure 2.8), êsb, b ∈ [1, ..., B]. These results are used to form part of the input portion of the
training dataset for q.
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was calculated at each iteration of gradient-descent, in each training run. Thus we

retained the so-called optimal weights Ŵ which was the W matrix which gave the

lowest validation error of all iterations of all 100 training runs. A visual comparison

of the output portion of the validation dataset and the output of q(u; Ŵ), supplied

with the input portion of the validation dataset, is shown in Figure 2.10.

(10) Apply the recursive operation using q: q(u; Ŵ) trained in step 6 was

applied (via the 1-D recursive operation) to êrx ∀ x. The resulting ‘high-resolution’

elastic parameter estimates are shown for three 2-D cross-sections from the survey.

For comparison, the sections are chosen such that each coincides with a well trajec-

tory down which ex has been measured: sections 1-3 are intersected by wells 1-3,

respectively. The sections are shown in Figures 2.11-2.13, and Figures 2.14-2.16 show

a magnified comparison of the well-measured, deterministic inversion estimates and

neural network derived estimates of ex at each well position.
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;Ŵ

)
(w

h
er

e
Ŵ
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2.9 Discussion

In the training procedure above each of the 100 training runs took ∼ 1800 seconds.

A large number of training runs was required since ∼ 90% of training runs (even

with the autoencoder pre-training method) yielded values for W which produced

poor results when q(u; W) was applied to the validation dataset (i.e., the sections in

the right column of Figure 2.10 would be geologically unreasonable in these cases).

Additionally, a considerable amount of time was spent trialling different network

topologies (numbers of hidden layers and nodes) and training parameters (φ and η,

defined in Appendix B and C) in order to find a configuration which yielded the best

training results. However, once trained the recursive application of q(u; Ŵ) to all

time samples down a trace at position x, and hence estimation of ex, was very rapid

taking < 1 second (for each trace).

The results obtained by the recursive application of the optimal neural network

q(u; Ŵ) are geologically reasonable in all of the cross-sections (Figures 2.11-2.13).

The sand and shale layers, as well as the effects of faulting, are better resolved in

comparison to the results of deterministic inversion. Furthermore, we find that the

results of the deep neural network methodology closely match the well-log measure-

ments at well 1 (Figure 2.14). However, at wells 2 and 3 (Figures 2.15 and 2.16)

the positioning of the layers and their estimated elastic parameter values are inac-

curate. Interestingly, the neural network results have been able to resolve all three

sandstone layers (‘A’, ‘B’ and ‘C’) individually in some locations (e.g., Figure 2.14)

even though the 1-D facies model used to generate the training dataset (Figure 2.5)

only contained two sandstone layers (‘A+B’ and ‘C’); the neural network has learnt

to ‘recognise’, in a general sense, a layer in the input data irrespective of position

in the trace. Such ‘position invariance’ is only possible because q is defined to act

recursively.

The poor results at wells 2 and 3 may be caused by inaccuracy in the determin-

istic inversion results êr, which form the neural network’s input. The deterministic

inversion methodology used does not constrain êr to fit the elastic parameter values

measured at the wells. The well data is only used to specify the low-frequency model

e0 and the covariance matrix Σe. Thus êr may be as inaccurate at the well positions

as anywhere else in the survey. We can assess the accuracy of deterministic inver-

sion results at the well positions by reducing the band-width of the well-log data

to match that of êr. To this end, we applied a low-pass filter (a Butterworth filter
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Figure 2.14: Results of applying q(u;Ŵ) recursively (green line) to the results of deterministic
inversion êr (red lines) down the vertical trajectory of well 1 (see Figure 2.4). The elastic parameters
e measured by well-logging (blue lines) are shown for comparison to the neural network results.
These measurements were also band-limited (using a low-pass filter) to match the band-width of the
deterministic inversion results êr for comparison (black lines). The IP , IS and ρ elastic parameters
are shown in the left, middle and right columns, respectively. The approximate positions of the ‘A’,
‘B’ and ‘C’ sandstone layers are marked. Well 1 intersects section 1 and thus its lateral position in
x is plotted in Figure 2.11. Note that these traces have been cropped to permit magnification of
the reservoir layers.
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Figure 2.15: As for Figure 2.14 but for well 2, which intersects section 2 (Figure 2.12).
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Figure 2.16: As for Figure 2.14 but for well 3, which intersects section 3 (Figure 2.13).
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with cut-off frequency ωC = 100Hz and slope parameter n = 4) to the well measure-

ments of e. The resulting reduced bandwidth well measurements (black lines) are

plotted alongside êr (red lines) in Figures 2.14-2.16. From this, it is clear that the

results of deterministic inversion are very inaccurate at the positions of wells 2 and

3, compared to those at well 1. This mirrors the performance of the neural network

for estimating e and suggests that inaccuracy in the deterministic inversion results

could be a significant cause of inaccuracy in the neural network’s predictions.

Random noise in the AVA-type data is an obvious source of inaccuracy in the

deterministic inversion results, especially for the low and high frequency ranges which

have the lowest signal-to-noise ratio. Additionally, processing errors in the AVA-

type data and lateral variation in the source wavelets (such that our assumption

of invariant wavelets in equation 1.6 breaks down) may cause inaccuracy in êr. In

fact, the deterministic inversion algorithm which we employed implemented lateral

correlation (i.e., with x) as a constraint on the solution êr, which should reduce the

effect of these errors (Thore, 2013). Furthermore, it ensures a geologically reasonable

solution in terms of continuity of êr between traces. Although lateral correlation is

not considered in the formulation of our methodology (since q is only applied via the

1-D recursive operation), this lateral correlation in the input data is clearly influential

in ensuring that the final results which we obtain using our method exhibit lateral

continuity (i.e., with respect to x, and are hence geologically reasonable).

It is clear that in future we must improve the accuracy of the deterministic in-

version stage. However, it would be simpler and more efficient to avoid deterministic

inversion altogether: we could train q to directly take the AVA-type data ds as in-

put and output an estimate of e (containing the high-fidelity prior information). We

could use the same recursive neural network function but train it with the training

dataset [dsi , e
s
i ], i ∈ [1, ..., N ]. However, lateral continuity, and hence compensation

for error in the AVA-type data, would no longer be applied by deterministic inver-

sion. This is the most likely reason that we have, as yet, been unable to successfully

apply the current 1-D method directly to real AVA-type data.

To overcome this problem we might define q as a 3-D recursive operator, which

is applied sequentially through a 3-D volume of AVA-type data. This would permit

both lateral continuity to be enforced and 3-D multi-point prior geological informa-

tion to be implemented (in the same way that the current methodology implements

1-D multi-point information down each trace). However even for the 1-D mapping,

deep neural network training is computationally costly and requires a large amount
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of user interaction, as demonstrated above. A neural network which takes a 3-D seg-

ment of data as input would require many more input variables within the network

topology, and consequently many more weights to accommodate the increased com-

plexity of the mapping. Furthermore, a larger training dataset would be required

in order to constrain these extra parameters. Thus the computational and user-

time cost of training a 3-D q may be very high, and improved (possibly automated)

(pre-)training procedures are required to make training such networks possible in

practice. Such advances may ultimately lead to a methodology which permits the

full non-approximated probabilistic mapping (equation 2.5 in the 1-D case) to be

learnt by a deep neural network.

Despite the limitation of our method to the 1-D transformation of the results

of deterministic inversion, it can nevertheless be of practical use for applying so-

phisticated prior information and hence for obtaining high resolution estimates of

subsurface elastic parameters. This was demonstrated by the results obtained for the

Laggan dataset (but only when accurate deterministic inversion results have been

obtained). It should be noted that the neural network and deterministic inversion

results are not directly comparable; we have attempted to apply as much prior infor-

mation as possible using the recursive neural network, whereas we have specified that

the deterministic inversion use only very restricted prior information (since we use

a Gaussian low-fidelity prior). We have not attempted to compare our methodology

to other methods which attempt to constrain seismic inversion using high-fidelity

prior information (e.g., González et al., 2007), which may be an interesting topic for

future study.

2.10 Summary

A new reservoir characterisation methodology was introduced which transforms the

results of deterministic elastic inversion for subsurface elastic parameters to estimates

of those parameters with high vertical resolution. The methodology uses a neural

network to approximately emulate the mapping between the deterministic elastic

inversion results and the ‘true’ elastic parameters. The neural network function is

designed to be applied recursively down a trace of deterministic estimates, predict-

ing as output the ‘true’ elastic parameters and taking as input (a portion of) the

deterministic elastic estimates and the previously predicted ‘true’ elastic parameters
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down the trace. The neural network acts only on traces at a single lateral location

in isolation thus the method is strictly one-dimensional.

The parameters of the neural network which emulate the desired mapping are

obtained via a training process, using a set of example instances of the input and

output variables. This training dataset is generated by first making samples from a

probability distribution which accurately encapsulates prior knowledge of the subsur-

face elastic parameters, to obtain examples of the output. Then, to obtain samples

of the input, synthetic seismic data is generated from these, and this seismic data

is inverted deterministically to create corresponding examples of deterministic in-

version estimates. To ensure that the neural network learns the mapping robustly,

a deep topology was chosen for the network. This promoted good generalisation of

the trained neural network to inputs which were dissimilar to those in the training

dataset.

The new methodology was tested on a real dataset for the Laggan gas field. A

geological interpretation of the reservoir and well data was used to generate one-

dimensional realisations of the elastic parameters in the reservoir. This accurate

prior information, and the corresponding results of deterministic inversion, formed

the training dataset. After training, the deep neural network was applied to real de-

terministic elastic inversion results for the reservoir, yielding estimates of the elastic

parameters with greatly increased vertical resolution. It was found that these results

were consistent with measurements of the elastic parameters at well positions where

the results of deterministic inversion were accurate. Thus it was shown that the

deep neural network methodology is useful for improving deterministic elastic inver-

sion results by applying sophisticated (multi-point geostatistical) prior information,

which was one of the aims set in section 1.8.
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Chapter 3

Prior replacement for geological

inversion

3.1 Overview

In section 1.7 we described how neural network methods can be used to efficiently

solve the geological inverse problem by determining, and repeatedly applying, the

mapping êi → p(gi|êi) ∀ i. However, the mapping is determined only for a given

prior distribution p(gi) implicit in the cell-wise geological posterior p(gi|êi). Thus, if

such neural network methods are to be more useful generally for geological inversion,

then a method for varying this prior with i, which does not require the costly re-

training of the neural network, is needed. Therefore in this chapter we introduce an

operation which subverts the usual order of application of Bayes’ rule in Bayesian

inversion: we take a probability already created using Bayes’ rule, and remove the

prior probability, replacing it with a different prior probability. We call this operation

prior replacement.

3.2 Introduction

Later in this chapter we will demonstrate prior replacement for continuous geological

parameters. Thus it is convenient to derive prior replacement using mi as the model

parameter (instead of gi) in this chapter. However, the prior replacement operation

can be applied equally to discrete and continuous model parameters. For continuous

parameters the cell-wise geological posterior distribution is written using Bayes’ rule

79



Chapter 3.2 BAYESIAN INVERSION OF SEISMIC DATA

as

p(mi|êi) =
p(êi|mi)p(mi)

p(êi)
, (3.1)

where all distributions are probability density functions (PDFs), and as usual in

Bayes’ rule p(mi) is the prior distribution and p(êi|mi) is the likelihood distribution

(that is, the cell-wise geological likelihood as described in section 1.3). p(êi) =∫ +∞
−∞ p(ei|mi)p(mi)dmi is the normalising constant (where we now use the integration

limits
∫ +∞
−∞ since mi is continuous).

Using Bayes’ rule we can now see that in principle prior replacement is a simple

calculation: roughly speaking, we divide the posterior distribution in equation 3.1

by the existing prior, p(mi) and multiply by the new prior distribution. Thus we

replace the prior in equation 3.1 with the new prior. We have only found two

explicit treatments of this operation in the literature, both in reference to statistical

classification models - that is, probabilistic classification of objects into discrete

classes based on associated data (Michie et al., 1994). Bishop (1995, p. 223) uses

prior replacement to modify the outputs of a Bayesian classification neural network,

and Bailer-Jones and Smith (2010) use the term ‘prior replacement’ to describe the

operation for discrete classification problems. However, neither work discusses how

it may be applied to continuous model parameters, nor any potential uses for the

operation in a wider context.

In this chapter we first describe the prior replacement operation in detail in

section 3.4. Following this, we describe how neural networks are currently used to

perform geological inversion for continuous model parameters (i.e., how the mapping

mi → p(mi|êi) is obtained) using so-called mixture density neural network (MDN)

inversion in section 3.5. Then we describe how prior replacement may be applied to

its results in section 3.6, in order to permit variation of p(gi) with i. In section 3.7

we give a numerical example of the application of prior replacement to the results of

MDN inversion for the inversion of elastic parameters for geological parameters at a

single grid cell i (section 3.7.1), and to a reservoir-scale geological inversion, where

p(gi) varies for all i within a 2-D subsurface model grid (section 3.7.2).

Finally, we discuss the implications of our results with respect to both seismic

inversion and Bayesian inversion in general. We also discuss the effect of prior

replacement on the quality of the final posterior estimate obtained. The discussion

of quality is supported by results presented in Appendix F for a simple Bayesian

inverse problem example. These results also suggest that prior replacement may be
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used as a variance reduction technique similar to importance sampling (indeed, prior

replacement seems to outperform importance sampling in this respect for the simple

problem presented therein).

3.3 Notation

The notation used in this chapter follows that used in Chapter 1 except for the use

of continuous (i.e., mi), instead of discrete (i.e., gi) geological parameters, for the

description of geological inversion. Also, an example of prior replacement within

geological inversion will be given where density is not considered in the elastic pa-

rameter vector, i.e., êi = [IP , IS]i here. Note that, as per the workflow illustrated

in Figure 1.1, it is assumed that êi represents the results of deterministic elastic

inversion in this chapter. However, in order to simplify notation we discontinue the

use of the hat symbol, and use ei in place of êi in this chapter. A summary of the

notation used in this chapter is given in Appendix H.2.

3.4 Probabilistic development of prior replacement

To derive the prior replacement operation in general terms we now write out the

Bayesian solution to an inverse problem in two different situations. Both situations

involve an inverse problem with the same forward function, thus the likelihood dis-

tribution is identical in both. However, in the first, so-called ‘old’ situation there is

a different prior probability distribution to that of the second ‘new’ situation. We

denote these with ‘old’ and ‘new’ subscripts. It follows from Bayes’ theorem that

the posterior must also vary. Accordingly the normalising constant may also vary,

which can be seen if we write it in the integral form in the denominator of Bayes’

theorem for the two situations:

pold(mi|ei) =
p(ei|mi)pold(mi)

pold(ei)
=

p(ei|mi)pold(mi)∫ +∞
−∞ p(ei|mi)pold(mi)dmi

(3.2)

and

pnew(mi|ei) =
p(ei|mi)pnew(mi)

pnew(ei)
=

p(ei|mi)pnew(mi)∫ +∞
−∞ p(ei|mi)pnew(mi)dmi

. (3.3)
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We can therefore see that pnew(mi|ei) can be written in terms of pold(mi|ei) (and

vice versa) by

pnew(mi|ei) = pold(mi|ei)
pnew(mi)

pold(mi)

pold(ei)

pnew(ei)
. (3.4)

In the context of inversion, we are usually supplied with a fixed data vector ei. Hence,

in both new and old situations we assume that the data observed is the same. The

normalising constant is dependent upon the form of the prior so may vary between

the two situations. Nevertheless it is still independent of the value of the parameter

vector mi. Therefore, for later convenience we set pnew(ei)/pold(ei) = k, such that

pnew(mi|ei) =
1

k

pnew(mi)

pold(mi)
pold(mi|ei). (3.5)

Equation 3.5 now has a form which allows us to evaluate the new posterior distri-

bution from the old one, assuming that we know both the old and the new prior,

pold(mi) and pnew(mi) respectively, and that we can evaluate the scale factor k. The

latter can be shown to be a normalising constant: since from the definition of a PDF

we have that
∫ +∞
−∞ pnew(mi|ei)dmi = 1, so integrating over both sides of equation 3.5

yields

k =

∫ +∞

−∞

pnew(mi)

pold(mi)
pold(mi|ei)dmi. (3.6)

Equation 3.5 shows the main operation involved in prior replacement. It will yield

a valid result only under certain conditions. One can interpret equation 3.5 as trying

to correct for a prior that is incorrect. The old posterior is divided by the old prior

in an attempt to remove its effects. If the old prior had regions of zero probability

then this will result in undefined values (0/0) where the old prior and posterior are

simultaneously zero in the model space. We can interpret this as follows: when the

old prior was initially applied and the old posterior obtained, we lost all information

about the likelihood in those regions, and we cannot regain such information by

changing the prior. Thus we are forced to assume that these undefined regions still

have zero probability if we wish to continue. We implement this through our new

prior: it is a condition that this must have zero probability where the old prior had

zero probability, hence the new posterior will have zero probability in such areas too.

We refer to this as the support condition henceforth.
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3.5 Mixture density neural network inversion for

geological inversion

In Chapter 2 we used a neural network to emulate the deterministic mapping be-

tween an estimate of the elastic parameters and an estimate of those parameters

with improved vertical resolution. As discussed in that chapter it would have been

preferable to obtain a probabilistic mapping, but the dimensionality of the data pro-

hibited practical implementation of the appropriate neural network methodologies.

In this case we are considering a problem that has a much lower dimensionality, since

the sample spaces of mi and ei (G and E , respectively) are relatively small. In this

case it is feasible to obtain a neural network mapping which does the mapping from

a datum to a probability distribution, that is to emulate ei → p(mi|ei).
This can be achieved using mixture density network (MDN) inversion as used

by Shahraeeni and Curtis (2011). MDN inversion is based on the assumption that

any posterior PDF like that in equation 3.1 can be approximated by the sum of K

normalised multivariate Gaussians each weighted by a constant (Bishop, 1994, 1995;

McLachlan and Peel, 2004)

p(mi|ei) =
K∑
j=1

αjφ
(
mi;µj,Σj

)
, (3.7)

where {αj|j ∈ 1, 2, ..., K} are normalising weights which obey
∑K

j=1 αj = 1, and

φ
(
mi;µj,Σj

)
is a normalised multivariate Gaussian function of mi with mean µj

and covariance Σj (where normalised implies that
∫ +∞
−∞ φ

(
mi;µj,Σj

)
dmi = 1).

This approximation of a PDF by a series of weighted, normalised Gaussians is referred

to henceforth as a Gaussian mixture model (GMM). Note that in this chapter (and

Appendix D) the letter K, which represents the number of kernels in the GMM,

should not be confused with k, which is used to represent normalising constants.

In MDN inversion, a neural network (see section 2.7) is determined that can

predict values of αj, µj and Σj in the mixture model which approximate the correct

posterior (the left hand side of equation 3.7) for any given value of ei. The weights

of the neural network with such properties are estimated by training using samples

from the distribution p(mi, ei) = p(mi)p(ei|mi). Samples in this training dataset

are obtained by first sampling from the parameter space using the prior distribution

p(mi), then obtaining the corresponding samples of ei from the probabilistic forward
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function (i.e., the cell-wise geological likelihood distribution - see section 1.3) p(ei|mi)

which is known. In principle, the training process for a MDN is the same as that for

a regular neural network (as described in section 2.7), but there are some differences

due to the definition of the MDN output as the parameters of a mixture model. For a

full description of MDN training see Bishop (1995, pp.140-161) for isotropic Gaussian

kernels, or Shahraeeni and Curtis (2011) who extended the method to anisotropic

Gaussian kernels.

It must be noted that the distribution p(ei|mi) when used to generate training

data is only assumed to be known as a function of mi (that is to say it is a proba-

bilistic forward model). Of course, if it were known as a function of ei then inversion

would not be required.

Once trained the neural network can determine the posterior p(mi|ei) corre-

sponding to any ei vector extremely rapidly and efficiently (i.e., do the mapping

ei → p(mi|ei)). However, a trained MDN embodies the prior distribution p(mi)

used to generate its training data, and thus application of the neural network to

predict p(mi|ei) is strictly valid only where that prior is deemed appropriate. As

argued in section 1.7, this is highly inappropriate in the case of geological inver-

sion, where we wish to use the MDN to calculate ei → p(mi|ei) ∀ i, and p(mi)

will certainly vary with respect to i in a reservoir model grid. Of course, the neural

network could be re-trained at each cell with a different, appropriate prior. We refer

to this methodology as the prior-specific training method, since the MDN is trained

for a specific prior distribution in each cell. However, training is a computationally

costly procedure and may even require numerous training ‘runs’ in order to obtain

a neural network which yields reasonable estimates of the posterior (as was the case

in Chapter 2). The number of cells in a subsurface model grid (i.e., M) may be

millions or even billions, thus we argue that the use of prior replacement to vary the

prior in the results of MDN inversion, instead of prior-specific training, can lead to

great efficiency gains, and in the next section we show how prior replacement may

be applied to the results of MDN inversion.

3.6 Prior replacement in MDN inversion

We can directly apply the prior replacement equations 3.1 to 3.6 to the results of

MDN inversion. If we equate the old posterior that appears in these equations to
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the mixture model output of the MDN then

pold(mi|ei) =
K∑
j=1

αjφ
(
mi;µj,Σj

)
. (3.8)

for some set of αj. Substitution of equation 3.8 into equations 3.5 and 3.6 permits

us to write

pnew(mi|ei) =
1

k

pnew(mi)

pold(mi)

K∑
j=1

αjφ
(
mi;µj,Σj

)
(3.9)

and

k =

∫ +∞

−∞

pnew(mi)

pold(mi)

K∑
j=1

αjφ
(
mi;µj,Σj

)
dmi. (3.10)

Thus, equations 3.9 and 3.10 provide a method of performing prior replacement

for the output of a MDN (i.e., for a GMM). As with the general equations for prior

replacement (equations 3.5 and 3.6), these equations only have well defined results for

pold (mi) and pnew (mi) distributions that satisfy the support condition. However,

an added complication arises because in equations 3.9 and 3.10 we use a GMM

approximation to the posterior, pold (mi|ei). This GMM approximation is non-zero

everywhere (except in the impractical case of Gaussian kernels with zero variance);

the real pold(mi|ei) may not be non-zero everywhere, hence the non-zero nature of

the GMM is an artefact of the approximation. Therefore pnew(mi|ei) should still be

zero wherever pold (mi) is zero (from equation 3.5). Since we know that the GMM

approximation is in error in this case, we should therefore still apply a new prior

pnew(mi) which has zero probability where the old prior has zero probability. In

other words, the support condition still holds in this instance.

In Appendix D, the prior replacement operations for MDNs are developed in

more detail for certain analytical forms of the priors (old and new). We show that if

the new prior is Gaussian or Uniform, and the old prior is Uniform, that equations

3.9 and 3.10 can be written as truncated GMMs (we will later make use of these

derivations). However due to this truncation they cannot be integrated analytically

(Drezner, 1992), so numerical integration techniques must be used to determine the

normalising constant. By contrast in Appendix D.5 we also show that, if both old and

new prior distributions are Gaussian, equations 3.9 and 3.10 are themselves GMMs,

and as such analytical integration can be used to solve them. We will not use these

derivations in the following examples, but we include them since they potentially

85



Chapter 3.7 BAYESIAN INVERSION OF SEISMIC DATA

permit the prior replacement operation to be performed extremely rapidly. They

are also of interest mathematically since they involve the division of Gaussians:

this operation is non-trivial compared to the multiplication of Gaussians, and is

only possible under certain conditions on the old and new priors. Whilst Gaussian

multiplication is widespread in the literature (Tarantola, 2002; Buland and Omre,

2003; Petersen and Pedersen, 2006), we have found little reference to such a ‘Gaussian

division’ operation elsewhere.

3.7 Testing prior replacement in MDN inversion

We compared the accuracy and computational efficiency of prior-specific training

to prior replacement for a synthetic geological inverse problem solved using MDN

inversion. To do this we first defined an uncertain forward relationship mi → ei

using the PDF p(ei|mi). This is the equivalent of the cell-wise geological likelihood

(discussed in section 1.3) for continuous geological parameters. To define this PDF

we used a variant of a well-known rock physics model, the Yin-Marion shaley-sand

model (Marion, 1990; Yin et al., 1993), which has been used previously as the forward

model in MDN inversion (Shahraeeni, 2011, p.16).

We used this model to predict two elastic parameters: the S-wave (IS) and P-wave

(IP ) impedances, given two continuous geological parameters: the clay content by

volume (m1) and the sandstone matrix porosity (m2) of a rock comprising a mixture

of sandstone and shale. The Yin-Marion model is in principle a deterministic model,

however Gaussian noise is added to its output, thus its output may be expressed

using p(ei|mi). A full description of how the Yin-Marion shaley-sand model is used

to define this distribution is given in Appendix E. Note that here we have set the

pore fluid of the rock to be pure water in each cell (which is to say that the water

saturation parameter, defined in Appendix E, m3 = 1 ∀ i).
We assume that the impedances IS and IP have been estimated by deterministic

elastic inversion. Thus we have an estimated elastic parameter vector ei = [IP , IS]i

at each cell in a subsurface model grid; thus we construct an inverse problem for

mi = [m1,m2]i to be solved at each of the M cells in the grid. In section 3.7.1 we

perform the MDN inversion ei → p(mi|ei) for a single datum ei (i.e., at a single

cell in the model) and vary the prior using both prior replacement and prior-specific

training, which permits us to compare the accuracy of the cell-wise posterior estimate
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returned by the two methods. In section 3.7.2 we then test MDN inversion with prior

replacement on a reservoir-scale grid model.

3.7.1 Prior replacement compared to prior-specific training

at a single cell

Before testing the two methods we must train an MDN. As explained in section 3.5,

to do this the probabilistic forward function is used in conjunction with a prior to

generate samples from p (ei,mi) to form a training dataset. In prior-specific training,

samples are made directly from the new prior. For prior replacement, sampling is

initially made from a Uniform old prior pold (mi) which was chosen to be as broad

as possible in the context of the model space, i.e.,

pold (mi) = pold (m1,m2) =

0 for mj /∈ [0, 1], j = 1, 2

1 otherwise
(3.11)

This old prior is then replaced by the new prior in each case. Note that all physically

possible (see definition of m1 and m2 in Appendix E) pnew (mi) PDFs are contained

within the bounds of the Uniform distribution in equation 3.11, thus the support

condition will hold for any pnew (mi) chosen.

We now test prior replacement and prior-specific training (for a single ei vector)

for the case of a (i) Uniform, and (ii) Gaussian new prior. The test uses an entirely

synthetic inversion: the data inverted by the MDN was also generated using p(ei|mi);

the same data ei, was used in both cases. It was chosen arbitrarily, since we simply

use it to demonstrate the method. In each of cases (i) and (ii) the appropriate prior

replacement equations in Appendix D were solved. The particular procedures for

each case are described below. In order to make the comparison fair between the

results of prior replacement and prior-specific training, an equal number of kernels

were used: K = 20 in equations 3.7 through 3.10 for all MDNs trained in the

following examples. Since the data point was the same in both cases, the same old

posterior PDF was used for prior replacement of the Uniform and Gaussian priors.

This PDF is shown in Figure 3.1.

A Markov-chain Monte-Carlo (MCMC) solution was obtained for reference in

each case. This PDF was generated by taking > 104 samples from the appropriate

posterior and then estimating the densities using a GMM with a very large number
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of kernels. Because a large number of samples were taken, we can effectively consider

this as the true posterior PDF. This is supported by the fact that the magnitude

of autocorrelation between samples within the Markov-chain, in both cases, was

typically much less than 0.01 at lags greater than 15 samples. The time taken to

make the samples from the posterior using MCMC, and the time taken in fitting

the density to these, is far in excess of the time required by the MDNs to return

a posterior estimate. However, we do not seek to compare the efficiency of MDN

inversion to MCMC methods (the advantages in terms of efficiency have already

been demonstrated by Shahraeeni et al. (2012) and references therein): we only use

the MCMC results for a comparison of solution quality.

(i) Uniform new prior

In order to perform prior replacement in this instance, equations D.15 and D.14 were

evaluated. Numerical integration techniques were used to calculate the normalising

constant in equation D.15. Figure 3.2(a) shows the new Uniform prior (that is,

the prior which we want to apply). Figure 3.2(b) shows the MCMC solution for

pnew (mi|ei). Figure 3.2(c) shows the estimate of pnew (mi|ei) obtained using prior-

specific training of a MDN with the Uniform new prior. Figure 3.2(d) shows the

estimate of pnew (mi|ei) obtained by using prior replacement to replace the old prior

implicit within the old posterior in Figure 3.1 by the Uniform new prior in Figure

3.2(a).

(ii) Gaussian new prior

In order to perform prior replacement in this case, equations D.19 through D.23 were

evaluated. Numerical integration techniques were used to calculate the normalising

constant in equation D.23. Figure 3.3(a) shows the new Gaussian prior (that is, the

prior we wish to apply). Figure 3.3(b) shows the MCMC solution for pnew (mi|ei).
Figure 3.3(c) shows the estimate of pnew (mi|ei) obtained using prior-specific train-

ing of a MDN with the Gaussian new prior. Figure 3.3(d) shows the estimate of

pnew (mi|ei) obtained by using prior replacement to replace the old prior implicit

within the old posterior in Figure 3.1 by the Gaussian new prior in Figure 3.3(a).
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m2 

m1 

Figure 3.1: (a) The old posterior obtained from the output of a neural network (MDN) trained with
samples made from the broad old prior defined in equation 3.11. Prior replacement was applied to
this PDF to emplace a Uniform and a Gaussian new prior in Figures 3.2 and 3.3, respectively.

3.7.2 Application to reservoir-scale geological inversion

The results for the inversion of a single datum show that although variations exist,

prior replacement and prior-specific training give comparable results; thus prior re-

placement is shown to work in practice using MDNs. Furthermore, we may conclude

that the prior replacement method would always be faster than prior-specific train-

ing if many such inversions were performed, and if prior information varies between

inversions. This can be understood by considering the computation times in the

examples given: for prior replacement it took ∼ 102 seconds to train the MDN using

the old prior, then ∼ 10−3 seconds to run the MDN to obtain outputs for any given

datum. Using prior replacement to construct the posterior for a new prior PDF for

both the Uniform new prior (solving equations D.15 and D.14) and Gaussian new

prior (solving equations D.23 and D.22) took ∼ 10−2 seconds. The total cost of prior

replacement is therefore ∼ 102 + q × (10−3 + 10−2) seconds, where q is the number

of times prior information changes. For prior-specific training it also took ∼ 102

seconds to train the MDN and again ∼ 10−3 seconds to run the MDN to obtain the

outputs for a given datum. However, a new MDN has to be trained each time the

prior changes so the total cost of prior-specific training is ∼q× (102 + 10−3) seconds.

Therefore it is clear that if we were to apply both methods to the inversion of a

large amount of data with varying priors then prior replacement could be orders of

magnitude faster than prior-specific training.

This is the case when solving a geological inverse problem similar to the above,
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(a) 

m2 

m1 

(b) 

(d) 

m2 

m1 

(c) 

m2 

m1 

Figure 3.2: (a) The Uniform new prior PDF. (b) The posterior PDF obtained by MCMC sampling in
the case of the Uniform new prior. This can be viewed as the ‘true’ posterior PDF for comparison.
(c) The new posterior PDF obtained from the output of a neural network (MDN) trained with
samples generated directly from the new prior, i.e., prior-specific training. (d) The new posterior
PDF obtained by removing the old prior from the old posterior in Figure 3.1, and applying the
new prior by prior replacement. In (b)-(d) the non-zero extent of the new prior is plotted with a
stippled line. Prior-specific training has resulted in density appearing outside of these bounds.
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Figure 3.3: (a) The Gaussian new prior PDF. (b) The posterior PDF obtained by MCMC sampling
in the case of the Gaussian new prior. This can be viewed as the ‘true’ posterior PDF for comparison.
(c) The new posterior PDF estimate obtained from the output of a neural network (MDN) trained
with samples generated directly from the new prior, i.e., prior-specific training. (d) The new
posterior PDF estimate obtained by removing the old prior from the old posterior in Figure 3.1,
and applying the new prior by prior replacement.
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but with one such problem defined in each cell of a reservoir grid model. Then

q would be equal to the number of cells M in the grid, which is typically over

∼ 105 even for 2-D grids and can approach ∼ 109 for 3-D grids (Buland and Omre,

2003; Shahraeeni et al., 2012). To demonstrate the usefulness of the this conclusion

in this case we carried out an inversion test on a 2-D synthetic reservoir model

using prior replacement. We created a 2-D model grid, with X = 50 and Z = 50,

populated with the clay content by volume (m1) and sandstone matrix porosity (m2)

parameters. Synthetic elastic parameter data ei ∀ i, were created using the forward

model p(ei|mi) (see Appendix E). It was assumed that wells were present within the

reservoir, down which m1 and m2 were known exactly. This well data was used to

generate the (varying) prior information across the reservoir model in a realistic way

(i.e., as commonly performed in industrial geophysics): Gaussian prior distributions

were determined at each cell by kriging (a form of interpolation, see e.g., Olea (1999,

pp. 7-17)) the known model parameters at the wells to each unknown cell using an

appropriate covariance function and mean. The kriging estimate and variance were

used as the Gaussian prior’s mean and variance, respectively, in each cell. Inversion

was carried out initially at each cell using a MDN trained with the broad old prior

in equation 3.11, then the Gaussian priors were applied using prior replacement at

each cell individually. Figure 3.4 depicts the model, the kriging-derived priors, and

the inversion results. The inversion took ∼ 200 seconds using the prior replacement

method. Given that the grid contains M = 50 × 50 = 2500 cells (and q = M) an

equivalent result using prior-specific training would take ∼ 105 seconds. Thus, even

in this simple test, the prior replacement method provided a solution with a factor

103 gain in computational efficiency over comparable previous methods.
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3.8 Discussion

3.8.1 Numerical efficiency

We have shown that prior replacement can be useful for efficiently obtaining MDN

inversion results with varying prior information. However, there is a significant com-

putation required in the prior replacement method which is absent in prior-specific

training. This is the normalisation step (equation D.15 or D.23), which must take

place during every inversion for which the prior changes. While in the case of the

results above it does not seem to slow the inversion greatly, as the number of dimen-

sions of the model space grows, non-analytic integration will become significantly

more costly. Using more advanced semi-analytical integration techniques for Gaus-

sians (Drezner, 1992) may reduce this cost to some extent (we used only numerical

integration here). We might also consider using only Gaussian priors for both training

an MDN, and for use in the prior replacement methodology. As shown in Appendix

D.5 this allows the normalising constant to be calculated analytically. However, this

puts constraints on the form of the priors that may be non-physical. For example, as-

suming non-truncated Gaussians means assuming that the model space has non-zero

probability everywhere; this might not be appropriate if we have hard constraints

on model parameter values (e.g., in Shahraeeni and Curtis (2011) porosity must lie

between 0 and 1).

Nevertheless, if we are able to perform efficient analytical normalisation (whether

using the results derived in Appendix D.5 or some alternative parametrisation of

posterior and priors) then prior replacement may be used for general Bayesian inverse

problems (i.e., not MDN inversion) of much higher parameter space dimension. This

could be very useful for problems where no closed form solution exists for the inverse.

For example in subsurface reservoir studies, flow data measured at wells is often used

to infer the permeability structure of the subsurface. Due to the sparsity of data in

time and space the problem is ill-posed. Furthermore, the forward physics which is

used to assess the likelihood of any particular model must be solved numerically at

great computational cost using flow simulation. Thus, if MCMC methods are used

to obtain an estimate of the posterior distribution over the subsurface permeability

structure then it will be extremely computationally expensive. Due to the subjective

nature of subsurface geological interpretation, however, prior information may change

dramatically throughout the operational lifetime of a subsurface reservoir. In this
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scenario the ability to change the prior distribution, a utility which prior replacement

provides, may lead to hugely increased efficiency. This would be possible, given the

discussion above, since Gaussian mixture models of the posterior distribution are

often used in practice for such problems (Gu and Oliver, 2005).

It should also be noted that normalisation is not mandatory. If we do not re-

quire the absolute value of the probability, for example if we only wish to find the

maximum-a-posteriori estimator or wish simply to sample from the GMM, then the

normalisation step is not required and the new method becomes faster still. Fur-

thermore, normalisation is unlikely to be an issue in problems which employ neural

network inversion since the parameter space dimensionality is limited (typically to

less than 10) by the amount of training data which may be processed in network

training (Vapnik et al., 1994).

3.8.2 Quality of the posterior estimate

For MDN inversion, prior replacement always returns a distribution which is consis-

tent with the final (i.e., the new) prior that is applied. This is not necessarily the

case for prior-specific training because it fits the posterior distribution using Gaus-

sians of finite size, and hence for example will always position some density outside

of the bounds of a Uniform prior. This failure is clear in the results of prior-specific

training in Figure 3.3(c) where non-zero contours of the posterior lie in the zero

probability regions of the new prior. By contrast, Figure 3.3(d) shows that when

prior replacement is used, no density is emplaced outside of the bounds of the new

prior since the multiplication of prior and likelihood is explicit. Thus we envisage

that prior replacement could be used in future for MDN inversion to ensure that the

‘hard’ bounds of a prior are enforced in the final posterior estimate.

Figure 3.3(c) shows a poor quality result using prior-specific training. Here the

diagonally orientated lobe of low probability observed in the true posterior in Figure

3.3(b) is poorly resolved in Figure 3.3(c). The prior replacement result in Figure

3.3(d) resolves this feature better. This phenomena may be attributed to the data

used to train the MDN in each case. Specifically, in prior replacement samples are

spread more equally across the parameter space due to the broader old prior that is

used. As such, the variance of the posterior distribution may be better reproduced.

By contrast in prior-specific training, sampling was concentrated around a peak in

the posterior induced by the new, more informative, prior. Thus we might expect
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that the regions of high probability and hence the mean of the posterior would be

better reproduced in this case. Indeed, it does appear that the high probability lobe

in Figure 3.3(c) compares more favourably in shape to that in Figure 3.3(b) than

does the lobe in Figure 3.3(d). Thus, it appears that some aspects of the posterior

estimates may be improved by prior replacement (compared to prior-specific train-

ing), whereas other aspects appear to be more poorly estimated. Thus, again we

envisage that prior replacement could be used in the future to enhance the results of

MDN inversion, where prior-specific training gives inadequate results. For example,

it may be desirable that the posterior is better resolved within a certain region of

the model space, thus we might use prior replacement to ensure that the training

data contains more samples from this important region by using an appropriate old

prior.

A more sophisticated analysis of the quality of the results is clearly necessary

if the effect of prior replacement on the posterior estimate is to be understood in

greater depth. To this end we have performed an empirical analysis of the effect of

prior replacement on an inverse problem where the posterior is modelled by a single

Gaussian kernel. This analysis is presented in Appendix F. The results support our

hypothesis that the effect of prior replacement on the quality of the posterior estimate

is due to the distribution of samples used to estimate the old posterior (i.e., the form

of the old prior). They also show that the effect is comparable, but not identical, to

that of the Monte-Carlo technique of importance sampling (see e.g., Bishop, 2006,

pp. 532-536), which suggests that at least an intuitive understanding of the effects

of prior replacement may be borrowed from that method. The results in Appendix

F also suggest that prior replacement could be used to manipulate the quality of

the posterior estimate for general Bayesian inverse problems. For example, one may

wish to better constrain the variance of the posterior in a Bayesian inverse problem

solved using MCMC. Then, similarly to those results obtained in MDN inversion in

Figure 3.3, this could be achieved by initially assuming a broad old prior and then,

using prior replacement, emplacing the appropriate PDF as the new prior. However,

more work is required to formalise such an operation.

There are a number of additional sources of error in the methodology which we

have not yet described explicitly. The first of these arises from the fact that the neural

network which is used to emulate the mapping between data and parameter space

has a number of parameters which must be defined manually. The most important

of these is the number of weights in the network, which controls the complexity of
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the mapping. As explained in section 2.7.3 imposing too much complexity may lead

to over-fitting, whilst the opposite may lead to bias (a poor fit to training data).

Also, the GMM itself is an imperfect model of the posterior since it has a finite

number of kernels. Furthermore, training is performed using optimisation which

may be subject to local convergence. Thus careful effort must be made to validate

the neural network model before combining it with prior replacement. In general,

one should be aware that it is much more difficult to predict the accuracy of the

resulting posterior probabilities obtained using network inversion (especially coupled

with prior replacement) than those obtained using MCMC (which is guaranteed to

converge to the correct new posterior after a sufficient number of samples is made).

3.9 Summary

We have derived expressions which allow the analytical computation of Bayesian

posterior probability distributions with a variety of prior distributions using the

method of prior replacement, particularly for Gaussian mixture models (GMMs).

This procedure involves inverting for an ‘old’ posterior, determined by a likelihood

PDF and old prior PDF, and then analytically replacing the old prior with a ‘new’

prior. We have shown that prior replacement can be a useful method for varying

the prior distribution within the result of mixture density neural network (MDN)

inversion. This avoids the computationally expensive step of MDN re-training at

every instance that prior information changes (i.e., the MDN only has to be trained

once). Prior replacement will then return a correct posterior provided the new prior

distribution is non-zero only within the non-zero region of the old prior. We have also

shown that prior replacement can be used as a tool to improve the results of MDN

inversion in terms of certain statistical characteristics of the posterior distribution.

We have shown that we can use neural network inversion to obtain the mapping

ei → p(mi|ei) ∀ i in a subsurface model grid, and then use prior replacement to vary

the prior p(mi) distribution implicit within the resulting posterior estimates with re-

spect to i. The operation can be easily generalised to discrete geological parameters.

Thus this achieves one of the objectives set out in section 1.7: neural network inver-

sion can be used to do geological inverse problems where p(gi) (or p(mi)) varies with

i. However, as argued in section 1.7 this can only be considered a valid solution to

the geological inverse problem where p(g) =
∏M

i=1 p(gi), which implies that there is
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no (prior) correlation between the geological parameters in different cells. However,

in the next chapter we will show that prior replacement permits the results of neural

network inversion to be integrated into stochastic geological inversion schemes where

p(g) is defined using full conditionals, and as such admits such correlation.

It should be noted that other methods, similar to neural network inversion, exist

for the determination of ei → p(mi|ei) ∀ i. For example, Grana and Della Rossa

(2010) used a Gaussian mixture model to model the whole joint density p(mi, ei) (and

thus the required conditional p(mi|ei) could be calculated from this for any given ei)

to solve a similar problem to that of Shahraeeni and Curtis (2011). There is no reason

why prior replacement cannot be used to modify the outputs of such methods, with

similar efficiency savings. For example, prior replacement could be used to modify

the prior implicit in the results of the method of Grana and Della Rossa (2010),

without having to re-estimate the joint density p(mi, ei).
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Chapter 4

Exact sampling for geological

inversion

4.1 Overview

In section 1.6 we described how the geological inversion problem can be solved us-

ing stochastic Monte-Carlo methods. Stochastic methods estimate p(g|ê) (equation

1.17) by obtaining a set of samples from it, and then use those samples to characterise

it (Mosegaard and Sambridge, 2002). Characterisation might include probability es-

timation, or calculating point estimates or moments of the distribution. Obtaining

samples from a distribution, for which one only knows the unnormalized density

or probability, may be achieved using Markov-chain Monte-Carlo (MCMC) meth-

ods. However, MCMC methods can suffer from bias issues since they rely on the

assumption that the distribution of a chain of correlated samples (which the meth-

ods produce) converges to the posterior distribution within a finite set of samples;

generally there are no proofs that suggest this is true. In this chapter, we derive

a recursive algorithm for computing a decomposition of the posterior into a set of

conditional distributions, which permits direct sequential sampling of g from p(g|ê).

Thus this allows independent, rather than correlated, samples to be made from the

posterior, and no assumptions need to be made regarding convergence. Henceforth

this is referred to as exact sampling, and the method may be a useful alternative to

MCMC sampling methods.
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4.2 Introduction

The derivation of the recursive algorithm assumes the local likelihood property, and

that p(g) is defined using the full conditional distribution (equation 1.13). In prac-

tice, it is often assumed that dependency within equation 1.13 can be limited to a

certain subset of the surrounding cells called the neighbourhood of cell i, Ne(i). In

this case the full conditional can be written as

p(gi|gH\i) = p(gi|gNe(i)) =
p(gi,gNe(i))

p(gNe(i))
. (4.1)

It is important to note that the definition of the neighbourhood as such means that

a cell is not a member of its own neighbourhood, i /∈ Ne(i). As with equation 1.13

a single, duplicate full conditional for all M cells in the grid is then used to define

the prior p(g) as a whole, which is to say that p(gi|gNe(i)) is invariant to i (except

at the edge of the grid, where simple modifications can be made to compensate for

any absent neighbours specified by Ne(i)). Henceforth we refer to this property, i.e.,

that we can specify the prior using a full conditional as in equation 4.1, as the local

prior property. The derivation of the recursive algorithm is also dependent upon the

assumption of this property.

The method developed here is quite general: it may be applied to any problem

which fulfils the local prior and likelihood properties, and not just the geological

inverse problem. However, it cannot be used as a useful alternative to MCMC

methods for problems which do not fulfil these properties. For example, it could not

be used to solve the elastic inverse problem where the local likelihood property is

certainly not fulfilled (see equation 1.8).

The ability to specify the prior using a full conditional is central to the derivation

of the algorithm, but the limitation of the conditional dependency to a certain range

of cells is not (theoretically Ne(i) may be any size). However, we will show later that

the computational cost of the algorithm scales exponentially with the size of Ne(i)

and the (minimum) dimension of the model grid (i.e., X, Y or Z for a 3-D grid). Thus

in practice limitations on the size of Ne(i) must be considered; such assumptions

about limited (conditional) spatial dependency in g are often made in geological

inversion (and other spatial inverse problems), so this does not obviate practical

application of the algorithm. However, the effect of the dimension of the model

grid on computational cost is not so easily reduced, and we therefore also develop
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an approximate version of the recursive algorithm to insure that the algorithm is

computationally feasible for large grids. We also find that the cost of the algorithm

scales with |G|, thus there must also be limitations to the size of the sample space

of the geological parameters but, again, these are not so strong as to prevent the

practical use of the algorithm.

Before describing the methodology, in section 4.3 we briefly describe the notation

used in rest of this chapter. In section 4.4 we discuss the specification of p(g) using

full conditionals in detail. Then in section 4.5 we further describe the convergence

problems of MCMC methods, since this motivates the construction of the exact

sampling method here. In section 4.6 we first describe the decomposition of the

geological posterior p(g|ê), which can be used to sample from the geological posterior

exactly. We then derive the recursive algorithm, which calculates the terms in this

decomposition, for a 2-D grid (section 4.6.1). After a discussion of the algorithm’s

computational cost, we discuss possible limitations on Ne(i) and |G|, and define the

approximate algorithm which permits application to realistically-sized grids (section

4.6.3). Finally we apply the approximate algorithm to a 2-D synthetic geological

inversion problem in section 4.7, and compare the results to that of Gibbs sampling,

a MCMC algorithm.

4.3 Notation

The notation used in this chapter follows that used in the introduction, except the

elastic parameter vector used within the synthetic data demonstration of the recur-

sive algorithm does not include density, i.e., êi = [IP , IS]i. We will demonstrate the

method for sampling of discrete geological parameters g ∈ GM , only. However, we

make use of continuous geological parameters m, to construct a forward relationship

between gi and êi for the synthetic demonstration of the method (section 4.7). Note

that, as per the workflow illustrated in Figure 1.1, it is assumed that êi represents the

results of deterministic elastic inversion in this chapter. However, as in the previous

chapter, in order to simplify notation we discontinue the use of the hat symbol, and

use ei in place of êi in this chapter. A summary of the notation used in this chapter

is given in Appendix H.3.
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4.4 Full conditionals and Markov random fields

A set of M non-restricted full conditionals (equation 1.13) does not necessarily cor-

respond to a valid geological prior distribution p(g), and the same is true for a set

of M full conditionals restricted by the local prior property in equation 4.1 (Besag,

1974).

A joint distribution p(g) only gives rise to a valid set of M full conditionals if

the so-called positivity condition is fulfilled. This requires that, if the individual

marginal probability of each gi is non-zero over its entire sample space (i.e., p(gi) >

0 ∀ gi ∈ G, ∀ i which we assume to be the case here), then the joint probability

of all the gi variables must be non-zero over their entire joint sample space (i.e.,

p(g) > 0 ∀ g ∈ GM). The positivity condition on the joint distribution requires

that the full conditionals themselves obey p(gi|gNe(i)) > 0 ∀ gi ∈ G, ∀ i. The

necessity of the positivity requirement can be motivated by attempting to apply

Brook’s lemma (Brook, 1964) to calculate p(g) from full conditionals containing

zero probabilities (see e.g., Rue and Held (2005, pp.30-31)).

Even if positivity is fulfilled, an arbitrary set of full conditionals does not neces-

sarily define a valid joint probability distribution p(g). This is because the full con-

ditionals may not be self-consistent (one may again motivate this by using Brook’s

lemma to determine the joint probability with arbitrarily-chosen full conditional

distributions). Hammersley and Clifford (1971) were the first to describe the nec-

essary conditions on p(g) which must be met for it to yield a set of full condition-

als with a certain neighbourhood structure. The Hammersley-Clifford theorem as

proven by Besag (1974) states that p(g) must factorise over sets of indices called

‘cliques’. A clique is defined as a set of indices, Λ = [λ1, ..., λ|Λ|], where each element

λi ∈ {Ne(λq), ∀ {q ∈ 1, ..., |Λ|}\i}: in words, it is a set comprising indices which

are all neighbours of each other. p(g) must factorise over all cliques defined by the

chosen neighbourhood structure on the grid. This ensures that when full condition-

als are calculated from the joint distribution (i.e., using equation 4.1), the correct

neighbourhood dependency structure is induced. In turn, this implies that the prior

must have the form

p(g) =
C∏
j=1

fj(gΛj
) (4.2)

where C is the number of cliques on the grid, fj are functions of the cliques, and gΛj

is the set of all gi variables within the jth clique. This equation defines a Markov
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random field (Besag, 1974) and embodies the factorisation condition which must be

met by the joint distribution to yield full conditionals with a certain neighbourhood

structure. Since the full conditionals are derived from the joint distribution it is

possible to determine the appropriate factorisation conditions on the full conditionals

which yield a valid joint distribution (Besag, 1974).

In the case of geological inversion, we stipulated that the full conditionals are

invariant to i, that is that we specify the prior by a single, duplicate full conditional

(except at the edges of the grid). Regardless, the full conditional(s) must still meet

the above conditions. Appropriate full conditional probabilities which meet these

conditions can be derived from training images (e.g., Varma and Zisserman (2003)).

It is easy to see that the factorisation requirement is irrelevant if the neighbourhoods

are not restricted as in equation 1.13 since then each gi variable is a neighbour of

all others (then the cliques are the size of the grid, and no factorisation is required).

However, if the neighbourhoods are limited in extent (which, as suggested in sec-

tion 4.2, we must apply for computational efficiency), this factorisation requirement

reduces the flexibility of the full conditional distribution (Besag, 1974). Thus we

employ a more pragmatic approach in section 4.7 to obtain the full conditionals used

to demonstrate the recursive algorithm.

Typical neighbourhood structures are illustrated in Figure 4.2. A common choice

for Ne(i) is a square centred on i. These neighbourhoods can be defined by the length

of the square’s sides, S (see Figure 4.2(b)-(c)). Simple modifications are made to such

neighbourhoods when i is close to boundaries (i.e., where there are no neighbours

beyond boundaries). We will henceforth consider only such square neighbourhoods

for derivation of the method.

4.5 Convergence problems of MCMC methods

In MCMC methods a chain of correlated samples is created from a target distribution.

If the chain is long enough the set of samples converges in distribution to the target

distribution (Gilks et al., 1996). For example, if we wish to sample from the geological

posterior p(g|e) we could use the archetypal MCMC algorithm, the Metropolis-

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) summarised in algorithm

1.

The ‘proposal distribution’ q used in algorithm 1 (equation 4.3) is chosen on
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Algorithm 1 The Metropolis-Hastings algorithm for sampling from p(g|e), where
U [L] is a Uniform distribution which is non-zero only over the set L.

Obtain the initial (t = 0) sample gt=0 ∼ U [GM ];
For t = 1, 2, ..., n

Obtain a candidate by sampling g′ from the ‘proposal distribution’:

g′ ∼ q(g′|g(t−1)); (4.3)

Calculate probability α of transitioning to the candidate:

α = min

{
1,

p(g′|e) · q(g(t−1)|g′)
p(g(t−1)|e) · q(g′|g(t−1))

}
; (4.4)

With probability α set gt = g′, otherwise set gt = gt−1;
End For

the basis of how well it promotes convergence to the desired distribution. Generally

speaking, it should be as similar to the posterior distribution itself as possible (Haario

et al., 1999). This is problematic since the posterior is not known a-priori, and

using a proposal distribution which is very dissimilar to the target can lead to slow

convergence. For example, consider a posterior PDF with one maximum, which has

a small support within which most of the probability mass is contained. Because of

its small support it might take many iterations of algorithm 1 to find the peak if we

do not use a similar proposal distribution from which to draw candidates (this is the

so-called Witch’s Hat problem - see Kass et al. (1998)). This can be remedied by

choosing a proposal distribution which promotes so-called random walk behaviour by

making the proposal distribution conditionally dependent upon the current member

of the chain g(t−1) (as is explicitly written in equation 4.3); proposed candidates tend

to be close to the current sample, and tend to be selected preferentially by equation

4.4 if they too have high probability. This heuristic enforces our intuition that high

probability areas will be ‘close’ together within the parameter space, and encourages

the chain to follow gradients toward regions of high probability.

The division in equation 4.4 implies that the normalization constant (of the ge-

ological posterior, equation 1.17) is never explicitly required for such an algorithm.

The only requirement for convergence to the posterior distribution is that the Markov

chain, which is induced by the use of the proposal distribution, be irreducible. Ir-

reducibility means that all parts of the parameter space GM may be reached by the
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chain starting from any position in that space (Gilks et al., 1996). However, there is

no assurance of convergence for finite n, and convergence is difficult to diagnose even

if it occurs (Besag and Green, 1993). The chain may be biased towards its starting

position so the initial part of the chain may exhibit ‘transient’ (non-stationary) be-

haviour. If the chain has converged it will exhibit some ‘dynamic stationarity’ and

this in some cases may be used as a diagnostic of convergence. If the onset of sta-

tionarity can be detected, samples from this transient period (the so-called burn-in

period) may be ignored in order to remove this bias from the ensemble.

Unfortunately, observing apparent dynamic stationarity over a finite set of sam-

ples does not imply that the ensemble has truly converged to the target distribution.

This is problematic because it implies that the posterior distribution, which we es-

timate from the ensemble of samples, would be incomplete and biased (even if we

remove the burn-in samples). For example, consider the case of a probability distri-

bution having two distinct peaks, each with small support as in the example above.

Suppose that the chain of samples were currently confined within one of those high

probability peaks. The probability of moving to the other peak is low since not

only must the proposal distribution produce a sample within the other peak, but

the probability of transition to that sample may then also tend to be low (since the

chain is already within a high probability region). This problem can be compounded

by the use of local random walk proposal distributions if the probability of samples

being chosen in between the peaks is low, since they may require that the chain

traverse areas of low probability in order to move from one peak to another. This

problem is similar to the problem of convergence to local maxima in optimisation

problems (Saul and Roweis, 2003). However, in Bayesian inversion the objective is

to determine the whole posterior distribution, and thus it is a problem if the chain

becomes stuck in any maxima (whether it be global or local) since this implies that

the rest of the distribution may be inadequately sampled. We cannot easily diagnose

this problem because the chain may nevertheless exhibit dynamic stationarity within

the region of the maxima. Thus in practice when we use MCMC techniques it is

hard to guarantee convergence to the posterior and hence ensure that the ensemble

of samples is unbiased (unless we have a good idea of what the posterior should be

like a-priori).

There are many existing strategies which aim to detect or ensure convergence

to the posterior by using heuristic rules to enhance mobility (or ‘mixing’) of the

chain around the model space. Well-known examples include simulated annealing
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(Kirkpatrick et al., 1983) and hybrid MCMC (Chen et al., 2001). Such methodologies

have been used successfully in a wide range of applications but they do not ensure

nor detect convergence: they only make it more probable that a non-biased estimate

of the posterior will be found within a practical number of iterations.

To a large extent then, both making a choice of proposal distribution and our

ability to correctly detect stationarity, depend on the form and strength of our prior

information. As suggested in section 1.5.2, in geological inversion it is usual to specify

much of the prior information in terms of relative spatial relationships between the

variables in different grid cells, rather than in terms of values of the variable at

absolute positions. In other words, probabilities are assigned to certain patterns or

variations which occur across the model grid. The prior distribution p(g) naturally

has high variance: there are many possible configurations of g which contain relative

relationships or patterns which are acceptable, but the euclidean distance between

such configurations within GM may be large. An example is if a variogram is used to

describe porosity heterogeneity in a subsurface reservoir: generally there is a large

range of configurations of porosity which would be consistent with any particular

variogram (Olea, 1999, p.154). Furthermore, in section 1.5.2 we described how in

general we must assume multi-modality in p(g) (and also possibly p(e|g)). Thus,

by Bayes’ rule (equation 1.17) we must expect multi-modality in p(g|e) (Shahraeeni

et al., 2012). Thus the problems associated with bias in the convergence of MCMC

sampling are highly relevant to the geological inverse problem (and, by extension,

spatial inverse problems that invoke MCMC methods in general).

4.6 Methodology

In this chapter we derive a sampling methodology which avoids the use of MCMC

sampling techniques altogether. The methodology estimates the conditional decom-

position of the posterior distribution as

p(g|e) =
M∏
i=1

p(gi|e,g<i). (4.5)

where < i denotes the set of indices 1, ..., i− 1 which for i = 1 represents the empty

set (such that g<i = [g1, g2..., gi−1]). We refer to the p(gi|e,g<i) distributions as

the partial conditionals. Obtaining these distributions allows sequential sampling
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from the geological posterior (Journel et al., 1998). This refers to the process of

first sampling g1 from p(g1|e), then g2 from p(g2|e, g1), then g3 from p(g3|e, g1, g2)

and so forth until gM is sampled from p(gM |e,g<M), each time using the previously

sampled g<i variables as the conditioning variables. If each of the partial conditionals

are of closed-form, then each can be sampled from exactly and the vector of samples

for all cells g is itself an exact sample from the posterior. One then need only

repeat the sequential sampling process to obtain another independent sample from

the posterior; in this way we avoid the problems of convergence associated with the

use of correlated MCMC sampling.

We use a recursive algorithm to determine the partial conditional distributions in

closed-form based on the algorithm of Bartolucci and Besag (2002). Such recursive

algorithms have their roots in hidden Markov chains (Baum et al., 1970; Scott, 2002)

and have been applied to spatial inverse problems (Ulvmoen and Hammer, 2010).

However, such methods require significant computational resources and as such in

the past have only been applied to small problems (Friel et al., 2009). We believe

that computational advances now make practical applications of these algorithms

possible, when appropriate approximations are made to the conditional decomposi-

tion in equation 4.5. Indeed, Arnesen (2010) and Tjelmeland and Austad (2012) have

already shown this to be true. However, the derivation of their recursive algorithm,

and the required approximations for its practical application, are based on the rep-

resentation of the posterior as a Gibbs potential (Friel and Rue, 2007). We present

a more pragmatic approach and develop our approximation using a probabilistic

terminology (developed initially by Bartolucci and Besag (2002)). Importantly this

permits the exact sampling algorithm to be implemented easily, and adapted for use

in geological inversion.

In the following sections, we develop the recursive algorithm for a 2-D grid spec-

ified, as usual, with Z rows and X columns and indexing as shown in Figure 4.1

(note the ‘rows’ and ‘columns’ terms are used to describe the z and x directions,

respectively, for clarity in the derivation of the algorithm). The algorithm can easily

be generalised to 3-D grids, or collapsed to 1-D grids. As stated above the recursive

algorithm requires the assumption of the local geological likelihood (equation 1.2)

and prior property (equation 4.1). We first derive the recursive algorithm and the

topology of the partial conditionals which it calculates, in section 4.6.1 and 4.6.2,

respectively. We then discuss its computational cost with respect to the parameters

of the inversion, and the approximations which permit it to be applied to large grids,
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Figure 4.1: (a) Indexing of the 2-D grid with dimensions Z (number of rows) and X (number of
columns). The total number of cells M = Z × X. Also depicted is the dependency structure of
the partial conditionals, p(gi|e,g<i), in equation 4.5: the dark gray cell is the variate gi, and the
light gray cells are those containing the conditioning variables g<i. These distributions are also
conditioned upon data in all cells, e. (b) The dependency of p(gM |e,g<M ) (i.e., when i = M).
(c) When i = M the set {< M} must contain the neighbourhood of M , thus the dependency of
p(gi|e,g<i) is limited to the neighbourhood of M (one possible example of such a neighbourhood
is shown here; other examples are shown in Figure 4.2).

in section 4.6.3.

4.6.1 The recursive algorithm

In order to determine the posterior and to sample from it efficiently, we develop a

recursive algorithm based on the work of Bartolucci and Besag (2002). Set notation

is used in the derivation, and brackets ({}) are used to enclose sets for clarity. As in

the rest of the thesis, sets will be used to reference subsets of cells in the grid and

their associated variables as a vector, for example g{<4}\1 = [g2, g3].

Our goal is to calculate the posterior distribution p(g|e) on the left hand side

of equation 4.5 by evaluating the partial conditionals p(gi|e,g<i) on the right hand

side. These distributions can be found efficiently by using the recursive algorithm of

Bartolucci and Besag (2002). Overall in the algorithm the partial conditionals are
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Figure 4.2: Possible neighbourhood arrangements. (a) A ‘non-square’ neighbourhood commonly
used in image processing. (b) A square neighbourhood with side of length 3 cells (which we denote
S = 3). (c) A square neighbourhood with S = 5.

calculated in the order i = M,M − 1, ..., 2, 1. To calculate the partial conditional for

cell i one must first calculate

p(gi|e,g{6k}\i) (4.6)

where

k = max(Ne(i)). (4.7)

Given the definition of k in equation 4.7, the set {6 k}\i will contain the neighbour-

hood of i. Thus, because of the local prior property (equation 4.1), there can be no

dependence on gi variables outside of the neighbourhood in equation 4.6. Also there

is no dependency on data apart from that located at cell i (in equation 4.6), because

of the local likelihood property (equation 1.2). Thus we may rewrite equation 4.6 as

p(gi|e,g{6k}\i) = p(gi|ei,gNe(i)), (4.8)

and this expression can be decomposed, using Bayes’ rule, into two terms:

p(gi|e,g{6k}\i) = Zip(ei|gi)p(gi|gNe(i)) (4.9)

where p(ei|gi) is the cell-wise geological likelihood, p(gi|gNe(i)) is the full conditional,

and Zi =
(∑

gi∈G p(ei|gi)p(gi|gNe(i))
)−1

is a normalising constant. If we assume

that p(ei|gi) has been determined as a function of gi and that we have obtained

p(gi|gNe(i)), then equation 4.9 can be determined immediately. Zi must be calculated

by summation but this will be an undemanding task if both G and |Ne(i)| are not
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prohibitively large. Once equation 4.9 is determined then the identity

p(gi|g{6j−1}\i, e) =

∑
gj∈G

p(gj|g<j, e)

p(gi|g{6j}\i, e)


−1

(4.10)

from Bartolucci and Besag (2002), may be applied recursively, for j = k, k−1, ..., i+

2, i + 1. At j = i + 1 the result gives the desired partial conditional at cell i. The

application of this identity represents a secondary backward recursion within the

algorithm. It should be understood that, since i = M,M −1, ..., 2, 1, the p(gj|g<j, e)

distributions in equation 4.10 will have been determined in the previous iterations.

Consequently, the algorithm must be initiated at i = M where the partial conditional

term can be calculated immediately since the neighbourhood of cell M , Ne(M) is

entirely contained within the conditioning cells in the partial conditional (see Figure

4.1(c)), thus

p(gM |g<M , e) = p(gM |eM ,gNe(M)) = ZMp(eM |gM)p(gM |gNe(M)), (4.11)

where ZM again denotes the normalizing constant required by Bayes’ rule. Once

p(gM |e,g<M) is determined, then p(g(M−1)|e,g<(M−1)) can be calculated and so forth,

until all terms (partial conditionals) in the posterior decomposition (equation 4.5)

are determined. Sequential sampling from p(g|e) can then be performed using the

determined partial conditionals. The complete recursive algorithm is summarised in

algorithm 2.

It should be noted that the conditional distributions as written in all equations

above are strictly correct. However, there may be conditional independence from

some of the written conditioning variables. We do not explicitly indicate this con-

ditional independence here in order to make it clear that these distributions are

conditioned by these variables (even if they may be conditionally independent); thus

these distributions then cannot be confused for marginals over those conditioning

variables. This is important because the domain of the numerator and denominator

must be compatible for the division in equation 4.10 to be valid. A discussion of

the conditional independence structure of the distributions is given in section 4.6.2,

below.

Algorithm 2 can be used almost without modification for 3-D grids; only a change

must be made to the indexing of the grid such that it runs over the third dimension
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(in addition to the rows and columns of the 2-D case). A cubic 3-D neighbourhood

structure would also have to be defined (using this indexing).

Algorithm 2 Recursive algorithm for a 2-D grid with Z rows and X columns with
M = Z ×X cells, and neighbourhood structure Ne(i).

Calculate p(gM |g<M , e) = ZMp(dM |gM)p(gM |gNe(M));
For i = M − 1,M − 2, ..., 2, 1

Calculate k = max(Ne(i));
Calculate p(gi|e,g{6k}\i) = Zip(ei|gi)p(gi|gNe(i))
For j = k, k − 1, ..., i+ 2, i+ 1

Calculate the recursive identity

p(gi|g{6j−1}\i, e) =

∑
gj∈G

p(gj|g<j, e)

p(gi|g{6j}\i, e)


−1

;

End For
Retain p(gi|g<i, e);

End For

4.6.2 Details of conditional independence

The local prior and likelihood properties induce conditional independence in the

partial conditional distributions. In terms of dependence upon the data, counter-

intuitively, the partial conditionals must incorporate non-local likelihood information

even if the local likelihood property is assumed. Consider the general case of the

partial conditional at cell i, p(gi|e,g<i); it is easy to show that because of the local

likelihood property described by equation 1.2 we may rewrite this as being inde-

pendent of the data e<i which coincides with the conditioning g<i variables. In

mathematical terms p(gi|e,g<i) = p(gi|e≥i,g<i). By equation 1.2 it is also obvious

that gi is dependent upon ei in the partial conditional. However, it is less obvious

that gi must also be dependent upon the data e>i, i.e., p(gi|e,g<i) 6= p(gi|ei,g<i).
The reason for this is that e>i yields information about g>i. Furthermore, the prior

specifies correlation between the elements of g. Thus e>i must yield indirect informa-

tion about gi and therefore cannot be ignored in the partial conditional. Therefore,

the recursive algorithm is designed to efficiently incorporate the non-local likelihood

information (i.e., from e>i) into the calculation of the partial conditional distribu-

tions.
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For the gi variables, if we have assumed the local prior property, i.e., we assumed

equation 4.1 with some Ne(i), then the dependency in the partial conditional may

be limited to a subset of g<i. This subset is determined by the global Markov

property (Rue and Held, 2005, p. 24), which can be stated by supposing that we

have three mutually exclusive subsets A, B and S of cells (indices) in the grid, and

some neighbourhood structure for the gi variables in the grid. The property then

states that if starting at any cell in A, and only by passing between neighbours,

one cannot reach any cell in B without passing through a cell within S, then gB is

conditionally independent of gA given gS . For square neighbourhood structures on a

2-D grid (e.g., Figure 4.1(a)), this can be used to show that the partial conditionals

are limited in dependency such that it is possible to write

p(gi|e,g<i) = p(gi|e,gJ(i)) (4.12)

where

J(i) = {j|j < i ∧max (Ne(j)) > i} . (4.13)

The resulting reduced dependency structure is demonstrated for a partial conditional

in Figure 4.3 for the case of square neighbourhoods with S = 3 and S = 5. Ap-

plication of the global Markov property to the distributions generated by equations

4.9 and 4.10 in the recursive algorithm yields distributions with similarly reduced

dependency structure. Thus the domain of these distributions can be calculated,

which permits the number of operations required to calculate equations 4.9 and 4.10

in algorithm 2 to be determined. This, in turn, permits the computational cost of

the recursive algorithm to be estimated.

4.6.3 Computational limitations and approximations

Bartolucci and Besag (2002) derived an expression for the number of floating point

operations required to calculate the partial conditionals, and hence determine the

posterior, using algorithm 2 for the non-square neighbourhood structure illustrated

in Figure 4.2(a). It can be derived by applying the conditional dependency structure

discussed in section 4.6.2. We use a slightly modified version of the expression which

gives an upper limit to the number of floating point operations required to calculate

all the partial conditionals, for a 2-D grid with square neighbourhood structure of
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Figure 4.3: Illustration of conditional dependency structures of partial conditionals induced on a
2-D grid with square neighbourhood structures by the global Markov property. (a) The dependency
structure of the partial conditional distribution, p(gi|e,g<i), without consideration of conditional
independence induced by a neighbourhood structure. (b) The dependency structure with consider-
ation of the square neighbourhood structure (with side S = 3), i.e., p(gi|e,g<i) = p(gi|e,gJ) where
J = {j|j < i ∧max (Ne(j)) > i}. (c) As for (b) but with a square neighbourhood with side S = 5.
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side S, as

Z ×X × S × Z × |G|S×Z (4.14)

where Z is the vertical dimension (i.e., number of rows), X is the lateral grid dimen-

sion (i.e., number of columns), S is the dimension of the square template, and |G|
is the size of the sample space of gi. Since the direction of indexing is arbitrary, Z

and X are interchangeable (i.e., we could run the algorithm on a grid with indexing

in the perpendicular direction to that in Figure 4.1). Thus if the dimensions are

unequal then the direction should be chosen such that the lowest dimension appears

in the exponent. Despite the exponentiation of |G| in equation 4.14, the size of the

sample space would not cause computational problems for the recursive algorithm in

many real applications. For example in geological inversion for reservoir parameters

we often invert for discrete parameters such as lithology-fluid class. The number of

such classes can be low (see, e.g., Rimstad and Omre (2010) where |G| = 4) or geo-

logical considerations can allow us to reduce the number of classes by implementing

‘nesting’ of lithologies within one another.

Equation 4.14 illustrates the importance of the local prior property for efficient

computation of the recursive algorithm: it is clear that since S appears in the ex-

ponent, the size of the square neighbourhood must be limited to permit efficient

application of the algorithm. In many real applications S is assumed to be quite low

(see, e.g., Rimstad and Omre (2010) where S = 3). Thus this limitation does not ob-

viate the practical application of the algorithm. Unfortunately, however, realistically

sized grids have a minimum dimension of at least hundreds of cells (Caers, 2005).

Since this number appears in the exponent (Z in equation 4.14), it is clear that the

algorithm, as presented, would be computationally infeasible even with sufficiently

low S and |G| parameters. This motivates us to define an approximation that permits

the algorithm to be applied to realistically sized grids by reducing the number which

appears in the exponent. To do this we henceforth assume that we have indexing

as defined in Figure 4.1(a). Then, roughly speaking, the approximation is to take

smaller bands of the grid and run algorithm 2 on these bands.

More precisely, for each row in the grid z = 1, 2, ..., Z − 1, Z, the set of rows

l(z) = {max(z − a, 1), ..., z, ...,min(z + a, Z)} are selected, where a is the so-called

approximation parameter. Note that by definition l(z) ignores non-existent rows.

This defines a so-called sub-grid for each z, denoted [g∗z, e∗z], whose elements are

defined by [gi, ei] ∈ [g∗z, e∗z] ∀ i : R(i) ∈ l(z), where the operatorR(i) returns the row
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(i.e., z) to which the cell with index i belongs. Algorithm 2 is run on each [g∗z, e∗z]

sub-grid. Once run, each cell in each sub-grid has a partial conditional distribution

associated with it. For each sub-grid, only the partial conditionals for the cells in

row z are retained as approximations to the partial conditionals in the complete

grid. In mathematical terms we set p(gi|g<i, e) ≈ p(gi|g∗z<i, e∗z) : z = R(i). These

are approximate because they are only dependent upon cells within the range of the

smaller sub-grid used in algorithm 3, and likewise only conditioned upon data in that

grid. Figure 4.4(a) illustrates the use of sub-grids for calculating the approximate

partial conditionals, and Figure 4.4(b) illustrates the resulting dependency structure

in one of these distributions. In effect, the approximation reduces the range at

which data, ei, is incorporated into the calculation of the partial conditionals in one

direction (e.g., here the range is limited in the vertical z direction). Also the range

of the conditioning cells (in terms of the gi variable) is limited. The result of this

approximation is that the computational upper bound in equation 4.14 is reduced to

Z ×X × S × a× |G|S×a. (4.15)

This approximate algorithm is summarised in algorithm 3. An analogue of this algo-

rithm for 3-D grids would consist of defining cubic sub-grids (rather than rectangular

sub-grids, as in the 2-D case) and then running the 3-D version of algorithm 2 on

these sub-grids. However, expansion to three dimensions may be computationally

expensive since the exponent in equation 4.15 would become S × a × b where the

approximation parameters a and b now describe the (limited) size of the cubic sub-

grid in two dimensions.

Algorithm 3 Approximate recursive algorithm for a 2-D grid with Z rows and X
columns with M = Z×X cells, and approximation parameter a. The operator R(i)
returns the row to which the cell with index i belongs.
For z = 1, 2, ..., Z − 1, Z

Select rows l(z) = {max(z − a, 1), ..., z, ...,min(z + a, Z)};
Define subgrid [gi, ei] ∈ [g∗z, e∗z] ∀ i : R(i) ∈ l(z);
Run algorithm 2 with sub-grid [g∗z, e∗z] to obtain p(gi|g∗z<i, e∗z) ∀ i : R(i) ∈ l(z)

End For
Retain approximations p(gi|g<i, e) ≈ p(gi|g∗z<i, e∗z) : z = R(i);
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Figure 4.4: Illustration of the approximation (algorithm 3) to the recursive algorithm (algorithm
2) with approximation parameter a = 2. The full recursive algorithm is run on sub-grids centred
on each row of the complete grid. Sub-grids comprise a rows above and below the current row of
the complete grid. When a rows do not exist in either direction the sub-grid is truncated to include
only the available rows. Partial conditionals are determined for each cell of each sub-grid. (a)
Shows the sub-grids centred on rows z = {1, 2, 3, 4}, where gray cells are members of the sub-grids.
The partial conditionals determined in the dark gray cells (i.e., for row z of each sub-grid) are
retained as approximations to p(gi|g<i, e), and are thus used for exact sampling from p(g|e). (b)
The dependency structure of the resulting approximate partial conditionals. The dark gray cell
is the cell containing the variate, gi. The light gray cells are those containing the conditioning
gi variables (note we have taken into account the conditional independence implied by the global
Markov property given in equations 4.12-4.13). The cells containing crosses are those containing
data which are involved in the evaluation of the corresponding partial conditional.
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4.7 Synthetic application

We tested the approximate recursive algorithm by applying it to a synthetic ge-

ological inverse problem involving the inversion of elastic parameter estimates for

lithology-fluid class. A categorical geological parameter gi is used to represent

lithology-fluid class, where

gi ∈ G = {Shale, Gas-sand, Brine-sand}. (4.16)

Two 2-D grids were populated with this univariate geological parameter using a sim-

ple geological process model. The model generated channel shapes and overbank

deposits. These were filled with brine-sand and emplaced within a shale lithology.

Gas was then emplaced in some of the channels, in a manner consistent with gas-

saturation in such geological features (i.e., obeying gravitational ordering). One of

these grids, shown in Figure 4.5, was used to determine the full conditional distribu-

tions and hence the prior p(g) (thus this grid is henceforth referred to as the training

image). The other, shown in Figure 4.6(a), was used to generate synthetic elastic

parameter e data (thus it is henceforth referred to as the target grid). These data

will be inverted using the proposed approximate recursive algorithm. The elastic

parameter data was generated by considering each cell in the grid independently and

using a probabilistic forward model, p(ei|gi) to generate collocated S- and P- wave

impedances ei = [IP , IS]i ∀ i.
To define p(ei|gi), we began by choosing an appropriate rock-physics forward

function, the Yin-Marion shaley-sand model, which can predict the P- and S-wave

impedances (ei) for a given shale-sand mixture and pore fluid. Here three rock-

physical parameters were allowed to vary: clay volume content m1, sandstone matrix

porosity m2, and water saturation m3, such that mi = [m1,m2,m3]i. A component of

random Gaussian noise was added to the output of the rock-physics forward-function,

thus it could be written as a PDF, p(ei|mi). Full definitions of the Yin-Marion

shaley-sand model and p(ei|mi) are given in Appendix E.

This forward relationship only permits the generation of ei once the rock-physical

parameters mi are specified. Thus the next part of defining p(ei|gi) required defi-

nition of a relationship between gi and mi. This should be uncertain (probabilis-

tic) as we would expect a lithology-fluid class to have a range of possible different

rock-physical parameters (Avseth et al., 2005). Thus, each lithology-fluid class (in
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Table 4.1: Table describing bounds used to define p(mi|gi).

Lithology-
fluid class

Clay content
by volume
(m1)

Sandstone ma-
trix porosity
(m2)

Water satura-
tion (m3)

Shale [0.20, 0.40] [0.20, 0.40] [1.00, 1.00]
Gas sand [0.00, 0.20] [0.20, 0.40] [0.05, 0.60]
Brine sand [0.00, 0.20] [0.20, 0.40] [0.60, 1.00]

equation 4.16) was assigned a distribution p(mi|gi) describing the probability of the

rock physical parameters for that particular class. We described these relationships

using simple bounds [lower, upper] on the possible values of each rock physical pa-

rameter, for each lithology-fluid class (see table 4.1). The probability distribution of

the rock-physical parameters within these bounds was Uniform.

With p(mi|gi) and p(ei|gi) defined (that is, mappings between gi and mi, and

between mi and ei are defined), the full probabilistic forward function can be defined

as

p(ei|gi) =

∫ 1

0

∫ 1

0

∫ 1

0

p(ei|mi)p(mi|gi)dmi. (4.17)

This distribution can be sampled from without performing the integration analyti-

cally (which would be very difficult given the form of the rock physics forward model

described in Appendix E) by sampling sequentially first mi from p(mi|gi) and then ei

from p(ei|mi). Thus we may sample from the distribution and obtain the synthetic

data ei from the lithology-fluid class gi in each cell in the target grid. The resulting

data are shown in Figure 4.6(b) and (c); as can be observed, the distribution of sand

facies in Figure 4.6(a) is just discernible in these plots, however, there is little or no

visual distinction between gas- and brine- sand facies.

We have shown that it is possible to sample ei from p(ei|gi) given gi using equa-

tion 4.17. However, equation 4.9 in the recursive algorithm requires that we have

access to p(ei|gi) as a function of gi. To obtain this, for all i, we begin by defining

the prior distribution p(gi) to be Uniform (over G). Sampling gi from this distri-

bution and then sampling ei from equation 4.17 allows us to sample from the joint

distribution p(ei, gi) = p(ei|gi)p(gi). Such samples can be used to estimate p(ei, gi)

parametrically, and this parametric distribution can be used to obtain the desired

distribution as a function of gi by fixing ei and calculating p(ei|gi) = p(ei, gi)/p(gi).

The results are shown in Figure 4.7 for all cells in the target grid. This parametric

estimation is computational simple since gi is discrete and is small in terms of its
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sample space (i.e., |G| = 3 from equation 4.16), and can be performed by fitting a

Gaussian mixture model over the elastic parameter space (E) for each lithology-fluid

class.

It is important to note that we could not have obtained the likelihood without

estimating p(ei, gi) first. Initially, although we could sample from p(ei|gi), we did

not know it parametrically. The latent (or ‘nuisance’) parameters mi prevented us

from doing so, thus sampling was required. However, the estimation of the joint

distribution (and hence the sampling) need only be done once, and obtaining the

likelihood distribution at each cell in the target cross section only requires fixing ei

at the appropriate value in p(ei|gi) = p(ei, gi)/p(gi).

We must apply another prior (the full conditional) to p(ei|gi) within the recur-

sive algorithm (equation 4.9). This represents a prior replacement calculation (as

described in Chapter 3), which is the algebraic replacement of a prior implicit within

one posterior distribution by a new, different prior distribution using Bayes’ rule,

to form a new posterior. To avoid undefined probabilities in the new posterior aris-

ing from division by zero in this calculation, the Uniform prior distribution p(gi)

used to estimate p(ei, gi) must have non-zero probabilities wherever we expect the

new, replacing prior to have non-zero probabilities (this is equivalent to the support

condition as defined in section 3.4). In this case the Uniform distribution over (the

entirety) of the discrete sample space G satisfies this requirement.

Equivalently, neural network inversion (as in Chapter 3) could have been used

here to determine ei → p(gi|ei) ∀ i, and the prior replaced by the full conditional

in equation 4.9 (using prior replacement). However, since gi is discrete in this case,

mixture density network (MDN) inversion is not required and the simple method

of parametric estimation of the joint distribution p(ei, gi) using Gaussian mixture

models can be used instead.

In this demonstration we chose the neighbourhood for the prior full conditional

to be square with S = 3; the actual distribution p(gi|gNe(i)) was derived from the

training image, by visiting each cell in the training image grid which had appropriate

neighbours available, and counting the occurrences of each conditional event. This

method does not necessarily return a full conditional which is consistent with a valid

joint distribution p(g) joint over all i in the grid (see section 4.4). Nevertheless,

positivity can be ensured by simply adding a small number to any zero probabilities

calculated in the full conditional this ‘event-counting’ method. Factorisation can be

ensured by using equation 4.2 to define p(gi|gNe(i)) (i.e., as a product of functions
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defined with the appropriate cliques as their domains), and using the training im-

age to constrain these functions, rather than the probabilities directly (Varma and

Zisserman, 2003). However, by definition, the cliques are smaller than the neighbour-

hoods thus this method requires that such valid full conditionals must have a more

parsimonious parametrisation than simply specifying every probability in p(gi|gNe(i))
independently (as the event-counting method does). Thus we found that attempt-

ing to use a full conditional which does definitely satisfy the factorisation condition

cannot contain as much (prior) information as those returned by the event-counting

method, and hence does not produce sufficiently realistic inversion results for the

geological parameters.

Therefore we simply assume that the full conditional probabilities (with cor-

rection for positivity) obtained using the event-counting method are approximately

correct. This leads to equation 4.10 being approximate, which in practice means that

equation 4.10 yields probability distributions which are not normalised. Typically

the error in probability mass is < 0.1 and we simply re-normalize equation 4.10 to

correct for this. This approximation is an added source of error in the results of the

recursive algorithm. However, below we compare its results to those obtained using

an MCMC algorithm which uses exactly the same prior information, and show that

it compares favourably.

4.7.1 Results

With the likelihood distributions (as a function of gi) at each cell and the full con-

ditional determined, the recursive algorithm can be applied and the approximate

partial conditionals calculated. The approximation length used was a = 4. Once

the partial conditionals have been found, independent samples from the geological

posterior can be determined rapidly. Using the recursive algorithm to find the par-

tial conditionals took approximately 10800 seconds on a standard desktop computer.

Making each independent sample from the approximate posterior (specified using the

partial conditionals) took approximately 0.1 second.

An ensemble of 1 × 104 samples from the posterior was made using the approx-

imate recursive algorithm 2. Figure 4.8 shows four example realisations from the

ensemble. The ensemble of realisations was used to calculate the posterior cell-wise

marginal probability of gas-sand occurrence (i.e., p(gi = gas-sand|e) at each cell)

as an example of the kind of statistics that are then calculable. This is plotted in
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Shale   
Brine 

Sand 

Gas 

Sand  

Figure 4.5: Training image grid used to obtain the probabilities in the full conditional, p(gi|gNe(i)).
The training image represents a 2-D cross section from the 3-D result of a geological process model.
It contains sand-filled channels with overbank deposits, emplaced within shale. Gas has been
injected into some of the channels.

 

(a) (b) (c) 

Figure 4.6: (a) The target grid. (b) and (c) show S- and P-wave impedance data (e), respectively,
generated using the probabilistic forward model (the Yin-Marion shaley-sand model).
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(a) (b) (c) 

Figure 4.7: The likelihood of (a) shale, (b) gas-sand, and (c) brine-sand, determined using a
parametrised version of p(gi, ei). The likelihoods are normalized such that (in each cell) we have
p(ei|shale) + p(ei|gas-sand) + p(ei|brine-sand) = 1.

Figure 4.9 along with the target grid for comparison.

4.8 Comparison to Gibbs sampling

The results show that reasonable results can be obtained using the recursive algo-

rithm. The realisations in Figure 4.8 from the approximate posterior exhibit similar-

ities to the target section in Figure 4.9(a). The cell-wise posterior mean of gas-sand

occurrence in Figure 4.9(c) is consistent both with the true gas-sand distribution in

Figure 4.9(b), and the uncertainty which we might expect: it is nearly certain that

the two gas accumulations exist, but there remains some uncertainty as to their exact

extent. The quality of the estimate in Figure 4.9(c) compared to the information

content of the likelihood in Figure 4.7 shows the additional value of the prior infor-

mation contained in Figure 4.5 and embodied in the full conditionals which define

p(g).

These approximate results are somewhat difficult to appraise since we do not have

an exact geological posterior result with which to compare. An alternative estimate

for the posterior can be made using MCMC methods. However, such a method of

sampling may suffer from the convergence and bias problems described in section

4.5 which motivated us to develop the algorithm in the first place. Nevertheless, we

used an MCMC methodology called Gibbs sampling (Geman and Geman, 1993) to

obtain samples from the posterior and hence obtain an alternative posterior estimate

for comparison.

The Gibbs sampler, summarised in algorithm 4, uses the distribution p(gi|gNe(i), e)
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Figure 4.8: Four realisations (samples) of g from the geological posterior p(g|e), obtained using the
approximate recursive algorithm.

 

 

 

   

(a) (b) (c) 

Figure 4.9: (a) The target grid used to generate the elastic parameter data (e). (b) The true
distribution of gas-sand in this grid for comparison. (c) The posterior cell-wise marginal probability
of gas-sand occurrence (i.e., p(gi = gas-sand|e) at each cell) generated from the ensemble of samples
from the posterior p(g|e), obtained using the approximate recursive algorithm.
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to update gi at each cell at a time in the grid. This distribution is similar to the

full conditional but it is dependent on the data e. It can be derived from the full

conditional (equation 4.1) using Bayes’ rule as

p(gi|gNe(i), e) =
p(ei|gi)p(gi|gNe(i))∫

G p(ei|gi)p(gi|gNe(i))dgi
. (4.18)

where p(gi|gNe(i)) is the full conditional and p(e|g) is the joint geological likelihood

(defined in equation 1.3). This is a simple expression which may be calculated im-

mediately if the cell-wise likelihood (as a function of gi) and full conditional are

known. It can be shown that algorithm 4 is a special case of the Metropolis-Hastings

algorithm (and as such it will converge to the target distribution eventually if the

chain is irreducible) where the proposal distribution q is p(gi|gNe(i), e) and the prob-

ability of transition is always unity (Geman and Geman, 1993). Importantly, it can

be proved that, if the full conditionals satisfy the positivity condition, the chain is

irreducible and hence eventual convergence is assured (Robert and Casella, 2004, p.

376). The Gibbs sampler in effect removes the need to choose q by using the prior

as the proposal distribution, which is a common approach in MCMC methods (e.g.,

Tarantola, 2002) where the prior is available.

Because the Gibbs sampler is a random walk MCMC algorithm which only up-

dates one cell at a time, it moves very slowly around the posterior and thus con-

vergence to the target distribution can be slow (Belisle, 1998; Van Dyk and Park,

2008). Furthermore the risk of becoming stuck in a maxima is increased because

changes in the current state are incremental (i.e., they are only ever at a single cell).

This problem can, to a certain extent, be addressed by rerunning the algorithm from

different starting points. However this may be of limited use if the parameter space

is large (Brooks and Gelman, 1998), and this approach does not in any case solve the

fundamental problem which is the difficulty in ensuring that the Gibbs sampler will

be able to visit all important parts of the parameter space within a practical time

period, and hence produce a chain of samples which will determine the posterior

without bias.

We used the same cell-wise likelihood distributions and full conditional (used in

the approximate recursive algorithm to obtain the results in section 4.7.1) in algo-

rithm 4 to sample from p(g|e) using Gibbs sampling. Initially we ran the algorithm

for 1× 108 iterations which took approximately 9× 109 seconds. We removed many
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Algorithm 4 Gibbs sampling algorithm for sampling from p(g|e), where U [L] is a
Uniform distribution which is non-zero only over the set L.

Obtain initial sample gt=0 ∼ U [GM ];
For t = 1, 2, ..., n

Set gt = gt−1;
Choose a cell i at random in the grid, i ∼ U [1,M ];
Sample from g′i ∼ p(g′i|gtNe(i), e);

Set gti = g′i;
Retain gt;

End For

of the resulting realisations by only retaining a sample every 4× 106 iterations (this

process of ‘thinning’ removes highly correlated samples). From the 25 realisations re-

tained, a cell-wise posterior probability of gas-sand occurrence was calculated. This

estimate and the final realisation retained are plotted in Figure 4.10(a)-(b). As dis-

cussed above the Gibbs sampler has the tendency, in practice, to become ‘stuck’ in

probability maxima (and therefore can yield biased results). Thus we re-initiated the

algorithm with a different random starting point gt=0 and repeated the procedure.

The results are plotted in Figure 4.10(d)-(e); note that slightly more realisations

(30) were retained after thinning in the second run of Gibbs sampling. The two

results are remarkably different. It seems that each has become stuck in a different

probability maxima. This conclusion is reinforced when we inspect the sequential

difference between the retained realisations (plotted in Figure 4.10(c) and (f)): the

realisations change greatly at the start of the algorithm but as the number of itera-

tions increases these changes become increasingly small. Indeed even when the first

chain in Figure 4.10 was run for 109 iterations (taking approximately 24 hours) there

was little change in the retained realisations (e.g., only one accumulation of gas was

ever realised).

4.9 Discussion

It is clear from the results of the previous section that the Gibbs sampling result

cannot be trusted - it is clearly highly biased toward the starting point because

the chain induced is not practically recurrent. For example if we ran the algorithm

just once and got the upper results in Figure 4.10 we would only detect one of the

accumulations of gas, while the lower results in Figure 4.10 contradict this conclusion.
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However, Gibbs sampling does deliver individual realisations which are more

consistent in some ways with the true model: for example, the shape of the channels is

better defined in the Gibbs sampling results (the recursive algorithm produces ‘rough’

channel edges). It should also be noted that if we take the two Gibbs results together

they are consistent with the results of the approximate recursive algorithm (which

shows that both gas accumulations are almost certainly present simultaneously).

The results of the recursive algorithm are therefore consistent with those of Gibbs

sampling, but they seem to be more reliable since there is no bias induced by the

starting point of the algorithm to (local) probability maxima.

Errors in the results of the recursive algorithm may be attributed to the approxi-

mations used to determine the partial conditionals. Not only will this approximation

error be a function of the approximation parameter (a) but also of the characteristics

of the posterior distribution itself (controlled by the forward relation and the prior).

We have not derived a method to obtain the approximation error a-priori, or even

a bound on it. This is a general problem with such approximation methods (Friel

and Rue, 2007). Even the rigorously-derived, graph-theory based approximation of

Arnesen (2010), cannot predict or bound the error a-priori. Thus either (i) an ex-

tensive empirical study of the relationship between approximation quality and those

parameters mentioned above should be made, or (ii) the approximation should be

rephrased in order to admit some way of finding a bound on the error. It is not clear

how (ii) could be accomplished, thus option (i) seems a more likely starting-point

for future work.

Another possible source of error is that we have used a full conditional which

may not be consistent with a valid prior distribution. However, we argue that this

is probably not the cause of the errors in the realisations produced by the recursive

algorithm: the Gibbs sampler used exactly the same prior full conditional and did

not produce realisations with such poor definition of the channels’ edges. It should

be noted that although the factorisation condition was not satisfied, the positivity

condition was. Thus the chain induced in the Gibbs sampling algorithm was cer-

tainly, at least theoretically, recurrent if it had continued to an infinite number of

samples.

In summary, the results obtained using the new sampling algorithm seem good

and robust, and we argue that the approximation errors discussed above appear at

least no worse than the errors associated with the results of Gibbs sampling. Neither

errors can be quantified. With Gibbs sampling we are consoled by the fact that in
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the infinite limit the ensemble of samples will converge to the desired distribution,

but for practical finite chains of samples this may never be the case.

In addition to attempting to estimate the approximation error a-priori, future

work on the recursive algorithm should concentrate on its practical application to

3-D problems. We have discussed briefly how the recursive algorithm, and the sub-

grid approximation, may be applied to 3-D grids. However, it is concerning that

the number of floating point operations required increases exponentially with the

approximation parameter (i.e., b) in the third dimension. We propose that, for prac-

tical application to 3-D grids, a different approximation scheme should be developed

which further reduces the number of floating point operations required. The funda-

mental control on the computational expense of algorithm 2 is the size of the sample

space of g (i.e., GM). This sample space is not explicitly chosen, but forced upon

us by the choice of spatial parametrisation as a grid. It may not be optimal if a

large part of the model space can be disregarded as a geological impossibility. This

is often the case given the spatially structured nature of naturally occurring geology.

If we call this segment of the model space - which may be assigned zero probability -

N then the effective size of the model space should be G ′ = GM −N . It is clear that

if we were able to somehow run algorithm 2 on G ′ rather than GM then significant

efficiency savings could be made. However, we found that implementation of this

in practice is difficult since the division in equation 4.10 must be carried out with

different irregular sample spaces for the denominator and numerator. Further work

must be carried out before this approximation can be used effectively.

Extension of the algorithm to continuous variables gi (such as those inverted for

by Shahraeeni et al. (2012)) may be possible. However, it is likely that a sparse

parametrisation of both the prior and likelihood (e.g., a Gaussian mixture model)

would need to be chosen such that the computational cost may be controlled.

There are similarities between our recursive algorithm technique and multi-point

geostatistical simulation techniques (Remy et al., 2009, pp.69-73). These techniques

can be interpreted as trying to determine a-priori the partial conditionals p(gi|e,g<i)
(Strebelle, 2002). This means that training images are produced of the g and cor-

responding e variables. Then the partial conditionals are determined empirically

from these by using either machine learning techniques (Caers, 2001) or parametric

estimation (Strebelle, 2002). The advantage of this approach is that, in theory, no

computation is required to obtain the partial conditionals: they are simply learnt

from ‘examples’ of [g, e] and are ready for use immediately. In reality these exam-
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ples are created by first generating a training image for the geological variable g

and then using forward modelling to obtain e. This is a significant computational

burden, especially if the data generated by p(ei|gi) has high variance (as in the

example presented in section 4.7). Indeed it may not even be possible to obtain

enough samples in finite time, or with finite resources, to determine these partial

conditionals sufficiently well. Consequently the e variable is often referred to as

‘soft data’ in such inversions, implying that it only constrains gi locally e.g., ei may

only constrain gi (Zhang et al., 2008). As in these geostatistical learning strategies,

the recursive algorithm requires a training image of g to be generated so that the

prior full conditional can be determined. However, a corresponding training image

for e is not required: the recursive algorithm analytically incorporates the observed

data into the computation of the partial conditionals using the cell-wise likelihood

distributions. Thus the recursive algorithm may be a useful alternative to current

geostatistical learning-based strategies.

We have also shown that the prior replacement operation developed in Chapter

3 can be used within stochastic geological inversion. Equation 4.9 in the recursive

algorithm and equation 4.18 in Gibbs sampling both represent the application of a

so-called new prior (i.e., the full conditional) to a likelihood distribution p(ei|gi).
Such distributions can be determined from the results of neural network inversion,

that is ei → p(gi|ei) for all i, by removing the old prior used for training. Thus we

have shown that the requirement that p(g) =
∏M

i=1 p(gi) can be relaxed, and thus

neural network inversion can be a useful method for stochastic geological inversion

in general.

4.10 Summary

We have shown that the posterior distribution for spatial inverse problems can be

sampled from exactly, by using a recursive algorithm to decompose that distribu-

tion as a set of conditional probability distributions which may be sampled from

sequentially. However, this can only be achieved if the problem is specified by a

grid of model parameters with coincident, independent likelihood information, and

spatially correlated prior information specified using a full conditional distribution

(i.e., if the local prior and likelihood properties are assumed). We have developed

approximations to the recursive algorithm such that it may be applied efficiently to a
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Figure 4.10: The results of running the Gibbs sampling algorithm (a Markov-chain Monte-Carlo
method) to sample from the posterior p(g|e), with two different starting realisations shown in
the upper and lower rows. The left column shows the final realisation after 1 × 108 iterations,
the centre column shows the posterior cell-wise marginal probability of gas-sand occurrence (i.e.,
p(gi = gas-sand|e) at each cell), and the right column shows the total number of changes in facies
between consecutive retained (post-thinning) realisations.
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large 2-D grid of data. Because the posterior can be sampled from exactly, the well-

known convergence problems of Markov-chain Monte-Carlo sampling algorithms are

avoided. These algorithms (such as the Metropolis algorithm or Gibbs sampler) may

not produce a set of samples which converge to the posterior (target) distribution in

a practical time period.

We successfully applied the recursive algorithm to a synthetic geological inversion

problem: we inverted seismic impedance data for lithology-fluid class. The synthetic

data comprised noisy S- and P-wave impedances estimated at each cell in a 2-D

grid. A training image was used to determine a suitable prior defined using a full

conditional. From these two elements we estimated the posterior probability for the

distribution of brine-sand, shale and gas-sand throughout the grid. The results of

the recursive algorithm compared well to the results of Gibbs sampling on the same

synthetic data. The results of Gibbs sampling showed significant bias: the use of

such results would likely have led to one very significant gas-accumulation being

completely unidentified. Both gas accumulations are reliably identified by the new

recursive algorithm.

Thus the aim of developing a methodology for exact sampling from the geological

posterior, which avoids bias, was achieved. Additionally, we also used prior replace-

ment within the derivation of the new recursive algorithm and in Gibbs sampling.

Thus, by extension, we showed that neural network inversion (with the addition of

the prior replacement operation) can be useful in the context of general stochastic

geological inversion where the geological prior is joint over G (that is, it is not defined

as p(g) =
∏M

i=1 p(gi)).

133



References

Arnesen, P. (2010), Approximate recursive calculations of discrete Markov random

fields, Ph.D. thesis, Norwegian University of Science and Technology.

Avseth, P., T. Mukerji, and G. Mavko (2005), Quantitative seismic interpretation,

Cambridge University Press.

Bartolucci, F., and J. Besag (2002), A recursive algorithm for Markov random fields,

Biometrika, 89 (3), 724–730.

Baum, L. E., T. Petrie, G. Soules, and N. Weiss (1970), A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains,

The annals of mathematical statistics, 41 (1), 164–171.

Belisle, C. (1998), Slow convergence of the Gibbs sampler, Canadian Journal of

Statistics, 26 (4), 629–641.

Besag, J. (1974), Spatial interaction and the statistical analysis of lattice systems,

Journal of the Royal Statistical Society. Series B (Methodological), 36 (2), 192–236.

Besag, J., and P. J. Green (1993), Spatial statistics and Bayesian computation,

Journal of the Royal Statistical Society. Series B (Methodological), pp.25–37.

Brook, D. (1964), On the distinction between the conditional probability and the

joint probability approaches in the specification of nearest-neighbour systems,

Biometrika, 51 (3/4), 481–483.

Brooks, S. P., and A. Gelman (1998), General methods for monitoring convergence

of iterative simulations, Journal of computational and graphical statistics, 7 (4),

434–455.

134



Chapter 4.10 BAYESIAN INVERSION OF SEISMIC DATA

Caers, J. (2001), Geostatistical reservoir modelling using statistical pattern recogni-

tion, Journal of Petroleum Science and Engineering, 29 (3), 177–188.

Caers, J. (2005), Petroleum geostatistics, Richardson, TX: Society of Petroleum En-

gineers.

Chen, L., Z. Qin, and J. S. Liu (2001), Exploring hybrid monte carlo in Bayesian

computation, Sigma, 2, 2–5.

Friel, N., and H. Rue (2007), Recursive computing and simulation-free inference for

general factorizable models, Biometrika, 94 (3), 661–672.

Friel, N., A. Pettitt, R. Reeves, and E. Wit (2009), Bayesian inference in hidden

Markov random fields for binary data defined on large lattices, Journal of Com-

putational and Graphical Statistics, 18 (2).

Geman, S., and D. Geman (1993), Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images, Journal of Applied Statistics, 20 (5-6), 25–62.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov chain Monte

Carlo in practice, CRC press.

Haario, H., E. Saksman, and J. Tamminen (1999), Adaptive proposal distribution

for random walk Metropolis algorithm, Computational Statistics, 14 (3), 375–396.

Hammersley, J. M., and P. Clifford (1971), Markov fields on finite graphs and lattices.

1971, Unpublished manuscript.

Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains and

their applications, Biometrika, 57 (1), 97–109.

Journel, A., R. Gundeso, E. Gringarten, and T. Yao (1998), Stochastic modelling

of a fluvial reservoir: a comparative review of algorithms, Journal of Petroleum

Science and Engineering, 21 (1), 95–121.

Kass, R. E., B. P. Carlin, A. Gelman, and R. M. Neal (1998), Markov chain monte

carlo in practice: A roundtable discussion, The American Statistician, 52 (2), 93–

100.

Kirkpatrick, S., D. G. Jr., and M. P. Vecchi (1983), Optimization by simmulated

annealing, science, 220 (4598), 671–680.

135



Chapter 4.10 BAYESIAN INVERSION OF SEISMIC DATA

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller

(1953), Equation of state calculations by fast computing machines, The journal of

chemical physics, 21, 1087.

Mosegaard, K., and M. Sambridge (2002), Monte Carlo analysis of inverse problems,

Inverse Problems, 18 (3), R29.

Olea, R. (1999), Geostatistics for engineers and earth scientists, Kluwer Academic

Boston.

Remy, N., A. Boucher, and J. Wu (2009), Applied geostatistics with SGeMS: a user’s

guide, Cambridge University Press.

Rimstad, K., and H. Omre (2010), Impact of rock physics depth trends and Markov

random fields on hierarchical Bayesian lithology fluid prediction, Geophysics,

75 (4), R93–R108.

Robert, C. P., and G. Casella (2004), Monte Carlo statistical methodsvol.319,

Springer, New York.

Rue, H., and L. Held (2005), Gaussian Markov random fields: theory and applica-

tions, Chapman & Hall.

Saul, L. K., and S. T. Roweis (2003), Think globally, fit locally: unsupervised learn-

ing of low dimensional manifolds, The Journal of Machine Learning Research, 4,

119–155.

Scott, S. L. (2002), Bayesian methods for hidden Markov models, Journal of the

American Statistical Association, 97 (457).

Shahraeeni, M. S., A. Curtis, and G. Chao (2012), Fast probabilistic petrophysical

mapping of reservoirs from 3D seismic data, Geophysics, 77 (3), O1–O19.

Strebelle, S. (2002), Conditional simulation of complex geological structures using

multiple-point statistics, Mathematical Geology, 34 (1), 1–21.

Tarantola, A. (2002), Inverse problem theory: Methods for data fitting and model

parameter estimation, Elsevier Science.

136



Chapter 4.10 BAYESIAN INVERSION OF SEISMIC DATA

Tjelmeland, H., and H. M. Austad (2012), Exact and approximate recursive calcula-

tions for binary Markov random fields defined on graphs, Journal of Computational

and Graphical Statistics, 21 (3), 758–780.

Ulvmoen, M., and H. Hammer (2010), Bayesian lithology fluid inversion comparison

of two algorithms, Computational Geosciences, 14 (2), 357–367.

Van Dyk, D. A., and T. Park (2008), Partially collapsed Gibbs samplers: Theory

and methods, Journal of the American Statistical Association, 103 (482), 790–796.

Varma, M., and A. Zisserman (2003), Texture classification: Are filter banks neces-

sary?, in IEEE computer society conference on computer vision and pattern recog-

nition, 2003. Proceedings., pp.II–691, IEEE.

Zhang, T., D. Lu, and D. Li (2008), A statistical information reconstruction method

of images based on multiple-point geostatistics integrating soft data with hard

data, in International Symposium on Computer Science and Computational Tech-

nology, 2008. ISCSCT’08., pp.573–578, IEEE.

137



Chapter 5

Expert elicitation of the geological

prior

5.1 Overview

In section 1.5.2 we described how the geological prior distribution p(g) could be

defined by a geostatistical model, and how the statistics of such a model could be

obtained from training images. However, as was explained there, suitable real train-

ing images often do not exist for this purpose. An alternative is to generate training

images based on expert knowledge, but this can be costly and inaccurate. In this

chapter we describe a general method for obtaining the statistics of a geostatistical

model (such as the full conditional probabilities in equation 1.13) directly from an

expert. We demonstrate the methodology for a geostatistical model of a rock at

pore-scale, but since the method is general it may be immediately applied to ob-

tain statistics which specify the geological prior distribution p(g) used in seismic

inversion.

5.2 Introduction

In many geological disciplines geostatistical models are used to model the spatial

relationships between geological features of interest within a certain area or volume

of the subsurface (henceforth referred to as the target geology in this chapter). Such

a model can be used to generate stochastic realisations of the target geology (Journel

et al., 1998). For example, geostatistical models may be used to create realisations
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of the distribution of pores within a rock or soil, and such realisations may be used

to simulate flow in a subsurface reservoir (e.g., Keehm et al., 2004; Okabe and Blunt,

2005; Wu et al., 2006). Or, alternatively, they might be used to describe lithology

distributions for estimating expected ore reserves in mining applications (Matheron,

1963; David and Blais, 1977; Dimitrakopoulos, 1998). Or, in the case of seismic

inversion, they are used to specify a prior probability distribution over some set of

geological parameters.

Such models require calibration statistics (controlling parameters) that are ap-

propriate for each application; we refer to these as the ideal statistics in this chapter.

Ideal statistics can be determined from the analysis of analogue geological forma-

tions. Photographs (Dueholm and Olsen, 1993), core samples (Zhang et al., 2009) or

even geophysical survey results (Caers et al., 1999) from analogue formations may

directly provide training images from which the ideal statistics can be extracted

(Pringle et al., 2004, 2006; Price et al., 2008), but their relevance depends on the

true similarity of the analogue and target formations (Ringrose et al., 1999; Kupfers-

berger and Deutsch, 1999; Truong et al., 2013).

It is widely accepted that a lack of suitable analogue formation data is a significant

problem in geostatistics (Cui et al., 1995; Kerry and Oliver, 2007; Truong et al., 2013).

Consequently, subjective information on the ideal statistics, obtained from geological

experts via a process of elicitation, is increasingly incorporated within such analyses

(Curtis, 2012). Using this approach, statistics which generate realisations consistent

with the experts’ mental envisagement of the target geology must be elicited. In the

past this has been achieved by either:

1. creating realisations using the geostatistical model with a range of different

statistics until an image which corresponds to their envisagement of the target

geology is produced (e.g., Caers, 2005, pp. 18-26), or

2. producing a training image manually (Honarkhah and Caers, 2010; Comunian

et al., 2011) or from geological process models (Nordahl et al., 2005) from which

ideal statistics may be calculated.

Using approach (i), if the geostatistical model is appropriate to the application then

after a sufficient number of iterations the expert may find a realisation which matches

their envisagement of the properties of the target geology. They can take the statis-

tics of that model to be an estimate of the ideal statistics. However, the number of
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iterations required to reach that point may be very large - well beyond the fatigue

limit of the expert(s). Ideally approach (ii) will automatically result in ideal statis-

tics because the expert produces an appropriate training image of the target geology

(Michael et al., 2010). However producing a training image is clearly subjective as

it is highly unlikely that two people would produce identical images, or even use

the same geological concepts to describe a particular scenario (Bond et al., 2007,

2012). Geological process models also require subjective choices to be made about

which processes to include and which values to use for process-controlling param-

eters (Wood and Curtis, 2004; Hill et al., 2009). Additionally, using any of these

approaches we are first obliged to choose a geostatistical model for which to find the

statistics (parameters); this model is always wrong - it is a necessary simplification of

reality (Leuangthong et al., 2004). Loquin and Dubois (2010) provide a detailed dis-

cussion of the resulting errors. In practice such epistemic error may be counteracted

by modification of the statistics away from the strictly numerically best-fitting values

obtained from the training image, but this again requires subjective judgements to

be made. Both methods (i) and (ii) therefore have the potential to be very costly in

terms of expert time and associated computation, and both are in part subjective.

Interrogation techniques designed to obtain robust quantitative estimates of the

knowledge and uncertainty of individual and groups of experts have been developed

in the field of expert elicitation (Tversky and Kahneman, 1974; Lindley et al., 1979;

Kynn, 2008; James et al., 2010). Such techniques have been used successfully to

obtain probability distributions over geological parameters (Lindley, 1983; Baddeley

et al., 2004; Curtis and Wood, 2004). However, they have not been applied widely to

the estimation of parameters of geostatistical models in particular. An exception is

the recent work of Truong et al. (2013) who used formal elicitation techniques (e.g.,

Knol et al., 2010) to obtain estimates of the parameters of a variogram: they asked

a group of experts to complete a set of on-line questions about the numerical values

of the ideal statistics for a variogram model of earth surface temperature variability.

They then pooled the opinions of the individual experts, using the formal rules

of elicitation, to obtain an estimate (including uncertainty) of the ideal statistics.

Truong and Heuvelink (2013) used a similar approach to estimate the parameters

of a variogram describing the error on soil maps. The disadvantage of such an

approach, which uses numerical information, is that it requires the expert to have

some knowledge of the mathematics of the underlying model. This might not be

appropriate for a geological expert who works mainly with visual data, but who
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nevertheless has good intuition about the likely spatial relationships of geological

objects (i.e., variables).

We propose an alternative method for obtaining ideal statistics directly from

an expert without costly intermediate steps, and without requiring the expert to

understand the mathematics or statistics of the underlying model. This methodology

combines the principles of elicitation (Baddeley et al., 2004; Curtis and Wood, 2004)

with recent advances in so-called ‘interactive inversion’ (Boschetti and Moresi, 2000,

2001) in which a genetic algorithm is used to constrain an inversion with the input

of a geological expert. By contrast to the methods of Wood and Curtis (2004) and

Truong et al. (2013), our approach does not require any numerical input to be given

by the expert. A geological expert can therefore focus on their own area of expertise

- analysing spatial (geological) patterns.

In this chapter, after briefly discussing notation in section 5.3, we describe our

elicitation methodology in more detail and explain how the use of a genetic algorithm

(GA) is key to its efficiency in sections 5.4 and 5.5. In section 5.6 we then describe an

application to constrain the statistics of a particular multi-point geostatistical model

which has been used in the past to model pore-spaces in reservoir rocks (Wu et al.,

2006) and soils (Wu et al., 2004), as well as subsurface facies distributions (Stien

and Kolbjørnsen, 2011). We demonstrate the effectiveness of the methodology by

showing that ideal statistics can be estimated efficiently for this model, but also show

how the method can be used to assess the uncertainty associated with the geological

expert’s judgement when using the algorithm.

5.3 Notation

The notation used in this chapter follows that used in the introduction. We will

demonstrate the elicitation algorithm for the elicitation of discrete geological param-

eters only. Thus, g is used to represent the geological parameters here (although

the method can be easily generalised to continuous geological parameters m). A

summary of the notation used in this chapter is given in Appendix H.4.
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5.4 Elicitation methodology

Suppose that we have a probability distribution p(g) over the geological parameters

g in a (1-D, 2-D, or 3-D) grid. We assume that p(g) is defined by a geostatistical

model, parametrised by a vector of statistics T which we can write as T = {tk | k ∈
{1, 2, ..., L}} where L is the number of elements in the vector (or number of required

statistics). Thus (in principle, at least) we can make a realisation

g ∼ p(g|T), (5.1)

where we have explicitly noted a dependence of the distribution on some given vector

T. As discussed in section 1.5.2 the geostatistical model will either be two-point or

multi-point in nature. In the former case, T might correspond to the parameters

describing a variogram or to the parameters of a Gaussian distribution (in the non-

parametric and parametric approaches, respectively). For a multi-point model, T

might correspond to the probabilities within the full conditional distribution (equa-

tion 1.13). In principle, the choice of geostatistical model makes no difference to

the algorithm presented here, as long as it permits sampling to be performed as in

equation 5.1

Our elicitation methodology obtains an estimate of the ideal statistics, Tbest,

directly from the expert. Or in other words, it estimates the statistics which induce

p(g) to produce realisations of the geology which are consistent with the expert’s

envisagement of the target geology, for a given application. This involves iteratively

improving a small population of candidate statistics vectors S = {T1, ...,Tj, ...,TP},
where P is the number of statistics vectors in the population. Using p(g|T), each

member of this population can be used to generate a realisation: thus we obtain

an associated set of realisations R = {g1,...,gj,...,gP} where gj ∼ p(g|Tj). Note

that the index j will be used consistently in this chapter to reference members of

a population; it should not be confused with the index i which we will consistently

use to reference the individual geological parameters at each cell in the grid (i.e.,

g = [g1, ..., gi, ..., gM ]).

In each iteration of our method, S is updated using three genetic algorithm

operations (which are similar to evolutionary processes in nature), the details of

which are given in the next section and are controlled by the fitness of each Tj in S
with respect to some criterion. Here, the criterion for the fitness of Tj is how well
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its corresponding realisation gj in R matches the target geology. The target geology

is not physically accessible, as it is envisaged only mentally by the expert. We

therefore ask the expert’s opinion on how well each gj matches their envisagement

of the target geology (the fitness of gj). The GA operations only require a relative

ranking between the members of S (Goldberg, 1989) and thus the expert is only

asked to rank the set of gj variables according to their relative fitness within R.

The algorithm continues to iterate until a gj is found which adequately matches the

expert’s envisagement of the target geology, in their opinion. The corresponding Tj

is then retained as the ideal statistics vector, Tbest.

To summarise, using l to denote iteration number, the algorithm begins at l = 0

with a randomly generated initial population of statistics vectors Sl=0, and then

proceeds as follows:

1. Use Sl = {T1, ...,Tj, ...,TP} in p(g|Tj) to generate a set of realisations Rl =

{g1,...,gj,...,gP}.

2. Display the set of realisations in Rl to the expert or experts.

3. Ask the expert(s) to rank (from 1 to P , with 1 being the best ranking) each

gj in Rl. Associate ranking of each gj to the corresponding statistics vector

Tj in Sl.

4. If the expert(s) decide that one of the realisations (gj) is adequately consistent

with their mental envisagement of the target geology then stop, retaining the

corresponding statistics as Tbest = Tj. If not continue to step (5).

5. Apply genetic algorithm (GA) operations to the ranked set Sl, yielding a new

population of statistics vectors, Sl+1.

6. Set l = l + 1. Return to step (1).

The ranking in step (iii) does not need to be made over each member of Rl. That is

to say that we can specify (or the expert could choose) that the expert need only rank

P ∗ of the realisations where P ∗ 6 P , with the ranking running from 1 to P ∗. In this

case any unranked members of Sl are discarded and play no part in the generation

of Sl+1. This will be useful later.

Of course, we may be concerned about the representativeness of any single re-

alisation gj of the corresponding statistics, Tj, since it is generated randomly. A
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simple solution is to present realisations which are as large as possible (in terms of

the number of cells in the grid realised) such that the probability of displaying a

realisation with the desired statistical properties (i.e., those specified by Tj) is max-

imised. Alternatively, multiple realisations for a single Tj could be made in step (ii)

and an average ranking could be obtained. We aim to keep the algorithm as simple

as possible so we use the former strategy in our implementation of the algorithm but

the latter would be equally valid. In the next section we explain in detail the genetic

algorithm operations applied to Sl, and how on average they improve the population

(with respect to the criterion described above).

5.5 Genetic algorithm operations

Technically speaking the procedure described above, of iteratively improving a pop-

ulation in order to find optimal parameter values (in this case a vector of statistics),

constitutes a genetic algorithm given the appropriate choice of operations applied to

the ranked Sl population in order to form the new population Sl+1 (Goldberg, 1989).

In order of application these operations are:

1. Reproduction In this step a new set of P reproductions are made of the

statistics vectors in St. An element of St is chosen to be reproduced randomly

with probability inversely proportional to their ranking (i.e., the better ranked

the parameter vector, the more probable it is that it will be reproduced). The

resultant set of the first P new parameter vectors reproduced is denoted S ′t.
Note that when P ∗ < P any unranked population members are assigned zero

probability of reproduction and hence play no further part in the generation

of the new population.

2. Mating and crossover The members of S ′t are randomly paired (or ‘mated’).

Each pair of vectors then swaps a randomly determined number of their ele-

ments, producing the next stage of the population, S ′′t .

3. Mutation Each element of each vector in S ′′t may be perturbed randomly. The

probability that a given element is perturbed is given by the parameter β, and

the magnitude of perturbation is controlled by the parameter α. The exact

form of the mutation operation is application-specific: it is dependent upon
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the domain of the statistics vector T. This completes the genetic algorithm

operations, and produces the new population, Sl+1.

The analogy between the natural processes of genetic evolution and these operations

is clear from their names. It is also clear why, on average, they might be expected

to improve the population with respect to the expert’s opinion, yet retain diversity

within St: the ‘Reproduction’ step ensures that the best members of the population

are retained. The ‘Mating and crossover’ step interchanges and splices the ‘genes’

of these already good individuals in the hope that the next population will contain

improved individuals. The ‘Mutation’ step introduces some random perturbation

to the ‘gene pool’ so as to ensure mobility around the parameter space (any good

new mutations are more likely to survive subsequent iterations, as bad mutations are

likely to be removed by the ‘Reproduction’ step). The random nature of the genetic

operators is important as in theory this prevents the algorithm from becoming stuck

in local minima, thus the space of possible T vectors is better explored (Goldberg,

1989).

The GA differs from optimisation techniques in a number of other ways. The

most important of these for our application is that absolute values for the fitness of

the statistics vectors are not required: only their relative ranking is required. This

is important because obtaining meaningful absolute fitness values from the expert

would be virtually impossible. Furthermore, fitness gradients with respect to changes

in the vectors Tj, are not required (as is the case for many linearised optimisation

methods). Gradients could potentially be obtained from the expert but they would

be very time consuming to elicit, even for a single point in the space of possible T

vectors.

Clearly, there are a number of algorithmic parameters within the genetic algo-

rithm operations, such as the mutation parameters (α and β), or the proportionality

between rank in St and probability of reproduction, that we have not defined explic-

itly. These parameters effect the way the algorithm explores the space of statistic

vectors (henceforth the dynamics of the algorithm) and therefore the convergence

rate of the algorithm. We found that in the application below it took little effort

to determine reasonable values for these parameters through a process of trial and

error, which permitted convergence within an acceptable number of iterations. Thus

for brevity we will not discuss these parameters further and such parameter values

are kept constant for all results presented here, with the exception of the mutation
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parameters α and β, which we will vary later. These parameters define the maxi-

mum size and number of perturbations applied to the statistics vector Tj. They are

therefore important in determining the dynamics of the algorithm because they con-

trol the (expected) step-size that the algorithm uses to explore the space of statistics

vectors.

5.6 Example application to pore-space modelling

As stated above, the method of direct elicitation can be applied to any geostatis-

tical model including those used to define p(g) used in seismic inversion. We will

actually demonstrate the elicitation methodology for estimating the statistics which

parametrise a geostatistical model where the geological parameters g describe the

distribution of a rock’s pore-space. However, a cellular grid is used to model the

pore-space, which is identical to the grids used previously to model the geological

parameters for seismic inversion, the only difference is the scale of the cells. Thus

we will demonstrate that the method is directly applicable to determining p(g) for

seismic inversion. We will first describe the geostatistical model, and then explain

how we use the GA method in practice to estimate the ideal statistics (in the opinion

of individual experts) to represent specific target pore-space topologies. Finally we

describe how we demonstrate the algorithm’s performance in practice by allowing 12

experts to use the algorithm to determine ideal statistics.

5.6.1 Pore space modelling

We use a 2-D binary image model which contains two materials ‘pore’ and ‘matrix’,

and a multi-point geostatistical model, p(g|T), to represent the spatial dependency

between these two materials (Wu et al., 2004, 2006; Stien and Kolbjørnsen, 2011).

The image is modelled using a 2-D cellular grid identical to the subsurface model

grids used previously for seismic inversion: the grid has M cells with the usual

x ∈ [1, ..., X] , z ∈ [1, ..., Z] coordinate system, and indexing as shown in Figure

5.1(a)). Each cell is associated with a binary variable gi ∈ {pore,matrix}. Thus a

geological parameter vector g = [g1, ..., gi, ..., gM ] as used in previous chapters (albeit

at a different scale) can be used to describe the material in all cells. To define p(g|T)

we begin, for the moment, by ignoring the statistics (parameters) of the distribution

T, and write the joint probability distribution p(g|T) as a product of individual
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conditional probability distributions over gi given g<i = [g1, ..., gi−1] (that is all the

variables in cells previous to i in the indexing of the grid as shown in Figure 5.1(b)):

p(g|T) =
∏
M

p(gi|g<i,T). (5.2)

Now, before defining T, we make two further simplifications to this distribution.

Firstly we specify that the variable gi is conditionally independent of most of the

variables in g<i. That is, gi is only dependent on a smaller subset of them, the

neighbourhood Ne(i), of cell i. Thus,

p(g|T) =
∏
M

p(gi|gNe(i),T), (5.3)

where Ne(i) is defined as a subset of indices ‘previous to’ cell i which define the

neighbourhood (note the definition of the neighbourhood used here is more specific

compared to the more general definition in equations 1.13 and 4.1). The neigh-

bourhood is typically (but not necessarily) a set of adjacent cells, thus it is defined

as a function of cell i. For example the neighbourhood in Figure 5.1(c) is written

Ne(i) = {i−1, i−X−1, i−X}, where X is the lateral dimension of the grid. |Ne(i)|
is used to denote the number of the elements of Ne(i). The second simplification is

that the conditional distribution and (the shape of) the neighbourhood are invariant

to the position in the grid, i.e., Ne(i) and p(gi|gNe(i)) are invariant to i.

The statistics of the distribution, that is the T vector, can now be defined. Be-

cause of the invariance to position the only statistics required by the model are

those describing this single, general conditional probability distribution p(gi|gNe(i)).
Thus T need only specify these conditional probabilities for each possible pore-

matrix configuration of the neighbouring cells, gNe(i). Furthermore, since p(gi =

pore|gNe(i)) = 1 − p(gi = matrix|gNe(i)), it is sufficient for T to define just the

probabilities p(gi = pore|gNi
) in order that a valid probability distribution is spec-

ified. Specifically, we define T by first introducing C as the set of all possible

configurations of gNe(i). Since gi is binary the size of C is related to the size of

the neighbourhood by |C| = 2|Ne(i)|. Then returning to the definition of the vec-

tor of statistics as T = {tk | k ∈ {1, 2, ..., L}} each element is now a probability

tk = p(gi = pore|gNe(i) = C(k)) ∈ [0, 1]. In words, each tk element is the probability

of cell i being pore given that the neighbourhood of i contains the kth configuration

of pore and matrix in C. Consequently the size of the T vector is simply the size
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of C, i.e., L = |C| = 2|Ne(i)|. The index k will be used consistently in this chapter

to reference members of the T vector (and thus is distinct from the i and j indices

defined earlier in this chapter).

It should be noted that at the edges and corners of the grid, Ne(i) and p(gi|gNe(i)),
cannot be the same as those in the middle of the grid since there are ‘missing’ neigh-

bours (i.e., the invariance to position does not apply here). However, appropriate

modifications can be made to T to obtain appropriate conditional probabilities at

such positions, and this makes no fundamental difference to the method.

The conditional probability distributions which comprise the decomposition of

p(g) (equations 5.2 and 5.3) are dependent only on previous cells in the indexing

of the grid. Thus sampling from p(g) can be performed exactly using sequential

simulation (Stien and Kolbjørnsen, 2011), and hence the required realisations g ∼
p(g|T) can be generated efficiently for a given statistics vector T. This means that

realisations can be presented to the expert almost immediately, so there is no need

for the expert to wait for realisations to be generated. This is not a requirement

of the algorithm: there is no reason why the algorithm cannot pause for some time

between the points where it requires the expert’s input, as long as the total run time

is reasonable. However, we have chosen a real geostatistical model which can generate

realisations very rapidly such that the concept of the elicitation methodology can be

proven quickly and conclusively.

It is clear that the geostatistical model presented here is a particular instance

of the multi-point model defined by equation 4.1, with a certain non-symmetric

neighbourhood structure Ne(i). However, the choice of possible neighbours of i is

restricted to a subset of the cells previous to cell i in the indexing system. This

means that the ‘full conditionals’ in this case immediately permit exact, sequential

sampling of g from p(g) (which is in contrast to full conditionals in their general

form).

In any case, the geostatistical model described above can be used to generate

a set of realisations, R = {g1,g2,...,gP}, given a population of P statistics vectors,

S = {T1,T2, ...,TP}. Thus, in theory we can use the elicitation methodology de-

scribed in section 5.4 to find Tbest (from step (iv) of the elicitation algorithm) for a

given application. However, we must make some practical developments to the GA

algorithm in order to do this, which we describe in section 5.6.2.
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Figure 5.1: (a) Definition of an example 2-D grid and its indexing. (b) An illustration of a con-
ditional distribution used in the decomposition of the probability distribution (the geostatistical
model) in equation 5.2: the dark grey shaded cell contains the variate gi and the light gray shaded
cells are those containing conditioning variables. (c) The same conditional distribution but with
dependencies limited to a restricted neighbourhood of cells. Again, the dark grey shaded cell con-
tains the variate and the light gray shaded cells contain the conditioning neighbour variables in
Ne(i).
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5.6.2 Practical application of the GA

The first practical consideration is the definition of the mutation operation for this

application (and how this is related to the mutation parameters α and β); as ex-

plained above this is necessary since the statistics may have bounded domains. In

our application the statistics vector T comprises a set of probabilities denoted tk,

which therefore have domain on the interval [0, 1]. In this case if a tk element is

chosen to be mutated (with probability equal to the mutation parameter β) then the

new mutated value, t′k, is randomly generated from the Uniform distribution

t′k ∼ U [max (tk − α, 0) ,min (tk + α, 1)] . (5.4)

where α is the mutation parameter (which controls the magnitude of mutation) and

limits have been imposed at {0, 1} to ensure that the mutated vector element is still

a valid probability.

Perhaps the most important practical consideration is how the expert interacts

with the GA. We designed a Graphical User Interface (GUI) which displays the

members of the current population Sl to the expert, and which allows them to rank

the realisations g in Rl, and hence T in Sl, using only mouse clicks. Empirically

we have found that it is often difficult for an expert to start the GA (i.e., perform

ranking) on an initial, random population since these tend to produce realisations

which are highly non-geological. Thus we designed a two-stage algorithm with two

implementations of the GUI, where the first stage was designed to obtain a good

starting population for the algorithm. In this stage the population was relatively

large with P = 24. The realisations presented to the expert were also relatively

large in terms of the size of the grid simulated (X = 120 and Z = 120) but were

displayed with relatively low magnification with 4.3 cells/mm; this configuration is

intended to allow the expert to identify important large-scale statistical/geological

features of the realisation rapidly. Furthermore, the α1 and β1 parameters (where

the subscript 1 indicates that these parameters are used in the first stage of the

algorithm only) were relatively large with both being ∼ 0.4 (although they were

allowed to vary slightly between experts - the reason for this will be explained later).

The motivation for designing the first stage in this manner was to present the expert

with a diverse population that evolves rapidly such that they may find a general area

of the space of T vectors which provides realisations with geology consistent with
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the target geology. Since there were a large number of realisations at this stage, the

expert was only asked to rank the three best, i.e., P ∗ = 3. A typical screen-shot

from the first stage GUI is shown in Figure 5.2.

The experts were asked to perform the ranking at each iteration, using the ‘Next’

button in the GUI to indicate that ranking was complete and that the algorithm

could continue to the next iteration. The vectors Trank63 (obtained from grank63)

would then be passed to the GA operations in order to produce the population for

the next iteration, Sl+1. They were asked to continue using the GUI in this way until

the current population contained a realisation which they thought had (statistically)

the same geology as the target geology. They then ranked the population as usual

but instead of pressing the ‘Next’ button they were instructed to press the ‘Match’

button in the GUI. At this point the second stage of the algorithm would begin (and

the second stage of the GUI would be displayed). As explained above the output

of the first stage is a starting population for the second stage: this population was

made up of the three vectors Trank63 obtained from grank63 at the last iteration of

the first stage.

The second stage is designed to encourage the expert to look at the realisations

in greater detail and to ‘fine tune’ the population of realisations in terms of their

similarity to the target geology. Consequently, the population is much smaller with

P = 6 and the size of the realisation grids is slightly smaller (X = 90 and Z = 90)

than in the first stage; this permits the images to be magnified much more than in

the first stage (with only 1.6 cells/mm). Furthermore, the α2 and β2 parameters

(where the subscript 2 indicates that these parameters are used in the second stage

only) were relatively small, both being ∼ 0.15 (although again they were allowed to

vary slightly between experts - the reason for this will be explained later).

As stated above, the first population of the second stage is derived from the top

three ranked members of the population at the end of the first stage, Trank63. Since

in the second stage P = 6, each of these three vectors must be replicated once to

produce a total of six vectors (to become a valid first population for the second stage).

Since there were fewer realisations to compare in the second stage the experts were

asked to rank all six members of the population, i.e., P ∗ = 6. As in the first stage,

the experts were asked to rank the realisations presented to them in the GUI at

each iteration, using the ‘Next’ button to indicate that ranking was complete. They

were asked to continue until the current population contained a realisation which

they thought had (statistically) the same geology as the target geology. They then
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ranked the population as usual but instead of pressing ‘Next’ they were instructed

to press the ‘Match’ button in the GUI; once that button was pressed, the algorithm

takes grank=1 to be the realisation which the expert had found to match the target

geology gbest. Thus Trank=1 is taken to be the estimate of the ideal statistics Tbest.

At this point the algorithm terminates. A typical screen-shot from the second stage

GUI is shown in Figure 5.3.
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5.6.3 Testing the algorithm

In order to demonstrate the methodology we asked 12 geoscientists with varying

backgrounds to use the elicitation methodology (via the GUI) to estimate ideal

statistics Tbest for a certain target pore-space geology. The geostatistical model was

defined to have the neighbourhood as shown in Figure 5.1(c) (thus |Ne(i)| = 3 and

|C| = 23 = 8). Since we wanted to test the method in a controlled way, the target

pore-space was actually provided to the subjects: that is, a pore-space image was

displayed to them, and they were asked to use the pore distribution in that image as

the target geology. Their goal was to find statistics that generated pore-space images

with the same statistical distribution as that of the target image. Thus, given that

we know the target image (and its statistics) in each of these tests, we were able to

assess exactly how well the expert performed - which would not have been possible

if they were matching a concept or image held only in their mind. Note that in a

real application of the algorithm no physical target image would be presented to the

expert; instead they would be asked to use their mental envisagement of the target

geology for comparison.

The target image itself had been created using the same geostatistical model as

used to create realisations in the algorithm above, and therefore had been created

with an actual statistics vector, Ttarget. In mathematical terms the target image

was a realisation, gtarget ∼ p(g|Ttarget). Importantly this allowed us to measure

the numerical convergence rates towards Ttarget as the subjects used the GUI. We

emphasise that none of the numerical information about the target statistics was used

in the algorithm, nor was it provided to the subjects; it was only used for the purpose

of assessing the performance of the experts. The only information used by the

elicitation algorithm was provided through each expert’s subjective ranking provided

through the GUI. Two different target statistics vectors were used to generate two

different target pore-space distributions for the experts. The first vector produced

a so-called ‘crack-pore’ distribution: vertically aligned elongated pores with some

isolated micro-porosity. The second produced a so-called ‘round-pore’ distribution:

more rounded pores with much more micro-porosity within the matrix. The experts

were divided into two groups of six. One group was provided with ‘crack-pore’ target

images, the other with ‘round-pore’ target images.

Given that we knew Ttarget we could also test whether the expert was actually

able to obtain a Tbest vector which produces realisations gbest with geologies which
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were truly indistinguishable, to the best of that expert’s ability, from the target

geology gtarget. This could be achieved after the expert pressed the ‘Match’ button

by presenting them with a population comprising a mix of realisations generated from

the Tbest vector (i.e., Trank=1, which they have indicated matched the target geology)

and the Ttarget vector (which by definition should match the target geology). The

expert was then prompted to rank this new population as usual. If the expert ranked

the realisations generated using Ttarget as better than those generated using Tbest,

this indicates that the expert could potentially identify the realisations generated

using Ttarget as more similar to gtarget than those generated using Tbest. Thus we

diagnose that they were not justified in pressing the ‘Match’ button as their best

estimate of the statistics is still not a good enough match to the target image. If

there was no preferential ranking, this indicates that the expert truly could not

distinguish between the realisations generated by the Tbest vector (found by them

using the algorithm) and those generated using Ttarget, in terms of their geology.

Thus we diagnose that they were justified in pressing the ‘Match’ button.

We implemented this so-called consistency test only in the second stage of the

algorithm. After the expert pressed ‘Match’ at this stage a population of realisa-

tions was presented to them where 3 out of the 6 realisations were generated with

Ttarget and the remaining 3 of the 6 were generated using Tbest. The presentation of

these realisations was precisely the same as with any other population at a ‘normal’

iteration in the algorithm. The test is based on the assumption that if the expert

can distinguish between the realisations created using Ttarget and those created using

Tbest, then they will rank the former set of realisations as {1, 2, 3} and the latter as

{4, 5, 6}. Conversely, if the expert could truly not distinguish between the realisa-

tions then any ranking would simply be due to random chance, and the probability of

randomly ranking the population in this way is 0.05. Thus we say that the expert’s

decision (that gbest matches gtarget) is confirmed if the expert ranks the population

in any other way than that described above. However, if the expert does rank the

population in this manner we say that the decision is unconfirmed. Thus we can

classify any Tbest obtained with the algorithm as being confirmed or unconfirmed

using the consistency test.

In order to collect more data on its performance, the algorithm was not termi-

nated immediately in the second stage after the expert pressed the ‘Match’ button

(and the consistency test was made). Instead, the algorithm was allowed to continue

for a fixed number of iterations (20) in the second stage. Thus whenever the ‘Match’
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button was pressed the consistency test would be run but after its completion the

algorithm would continue using the population found before the test was performed,

during which period further matches could be identified and tested for consistency.

This allowed us to build up an ensemble of Tbest vectors, along with information as

to whether the match had been confirmed or not.

In this demonstration of the algorithm we also sought to investigate the effect of

the mutation parameters on the dynamics of the algorithm. Although in development

we had found that values of β1 ∼ 0.4, α1 ∼ 0.4, β2 ∼ 0.2 and α2 ∼ 0.2, were

sufficient to permit convergence, we varied these slightly between the experts tested;

for each of the 12 experts these parameters were sampled from Uniform probability

distributions on the following discrete sample spaces: β1 ∈ {0.35, 0.4, 0.45} and

α1 ∈ {0.35, 0.45, 0.5} and β2 ∈ {0.1, 0.15, 0.2, 0.25} and α2 ∈ {0.15, 0.2}.

5.7 Results

At each iteration of the algorithm the current population of statistics vectors Sl,
the current population of realisations Rl, and the rankings provided by the experts

were recorded. If the expert pressed ‘Match’ during the second stage Tbest was

recorded along with whether it was a confirmed or unconfirmed match using the

consistency test. The root-mean-square error (RMSE) between the highest ranked

statistics vector Trank=1 at each iteration and the target statistics vector Ttarget was

also calculated at each iteration and recorded. The RMSE is defined as

RMSE(Trank=1,Ttarget) =

(
(Trank=1 −Ttarget)

T (Trank=1 −Ttarget)

|C|

) 1
2

(5.5)

where the average is taken over each of the |C| elements (probabilities) in the statistics

vector, T.

Figures 5.4 to 5.6 summarise the results for the 6 experts who were given a

‘crack-pore’ target image. Figures 5.7 to 5.9 summarise the results for the 6 experts

who were given a ‘round-pore’ target image. The RMSE values at each iteration are

plotted for each expert along with an indication of the iteration of transition between

the first and second stages of the algorithm. The plot also indicates the iterations

at which the expert obtained a Tbest vector (i.e., where they pressed the ‘Match’

button) and whether this was confirmed or not by the consistency test. The figures
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show the gtarget provided to the expert during the first stage of the algorithm along

with the final grank=1 found by the expert using the first stage (i.e., that which was

the best ranked member of the three vectors used to generate the initial population

of the second stage). The figure also shows the gtarget provided to the expert during

the second stage of the algorithm along with the confirmed gbest found by the expert

with the lowest RMSE. If no confirmed gbest vectors were found by the expert then

the unconfirmed gbest vector with the lowest RMSE is displayed. If no gbest (either

confirmed or unconfirmed) vectors were found then no image is displayed here.

Each figure also contains a legend with the mutation parameters (α1, β1, α2 and

β2) applied for that run of the algorithm. As stated earlier we allowed these pa-

rameters to vary slightly for different experts. However, we found little meaningful

correlation between these parameters and the minimum RMSE obtained by the ex-

perts (the absolute correlation coefficients between any of these parameters < 0.1).

The legend also contains information about the expert’s microscope experience; after

discussion with the experts, each was given a score out of 10 indicating their micro-

scope experience (with 0 indicating “no experience” and 10 indicating “very regular

use”). Again, we found no significant correlation between this parameter and the

minimum RMSE obtained by the experts (the absolute correlation coefficient be-

tween this microscope experience score and the minimum RMSE was < 0.1).

5.8 Discussion

At the end of the first stage all 12 experts found a realisation which they believed had

statistically the same pore-space geology as the target image. In the second stage

almost all of the experts found images that they believed had statistically the same

pore-space geology as the target image, and most of these matches were confirmed

using the consistency test. Experts 2 and 7 were able to find pore-space images with

geology matching the target image in the second stage but these matches were not

confirmed by the consistency test. Expert 8 was unable to find any realisations that

he/she believed matched the target geology. Experts 2, 7 and 8 might have benefited

from being able to continue using the second stage GUI beyond 20 iterations since

convergence behaviour can be observed in RMSE values during this stage, which

may have been prematurely terminated.

There were considerable numerical differences between the Ttarget and Tbest vec-
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Figure 5.4: Results for experts 1 and 2. (a) The root-mean-square error (RMSE) between the
highest ranked statistics vector Trank=1 at each iteration and the target statistics vector Ttarget.

The dashed line represents the transition from the first to second stage of the algorithm. The •
and F symbols represent an unconfirmed and confirmed Tbest (or equivalently, match between gbest

and gtarget), respectively. (b) (right) The target image gtarget provided to the expert in the first
stage, and (left) the grank=1 realisation found at the end of the first stage. (c) (right) The target
image gtarget provided to the expert in the second stage, and (left) the confirmed gbest found by
the expert with lowest RMSE in the second stage. For expert 2 no confirmed gbest was found so
the unconfirmed gbest with lowest RMSE is shown.
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Figure 5.5: As for Figure 5.4, but for experts 3 and 4. Note that here both experts found confirmed
gbest realisations in the second stage of the algorithm, so this is displayed on the left in (c).
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Figure 5.6: As for Figure 5.5, but for experts 5 and 6.
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Figure 5.7: As for Figure 5.5, but for experts 7 and 8. Expert 7 found no confirmed gbest so the
unconfirmed gbest with lowest RMSE is shown on the left in (c). Expert 8 found no gbest (i.e.,
neither unconfirmed or confirmed) so no gbest is shown for this expert in (c). Both of these experts
would probably have benefited from being allowed to continue beyond 20 iterations in the second
stage of the algorithm.
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Figure 5.8: As for Figure 5.5, but for experts 9 and 10.
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Figure 5.9: As for Figure 5.5, but for experts 11 and 12.
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tors. The lowest RMSE values in these statistics (which are probabilities) being

greater than 0.07 for all experts. Lower RMSE values (as low as 0.05) were obtained

for some Trank=1 vectors but these, in the opinion of the expert, did not produce

realisations which matched the target geology (the expert did not press the ‘Match’

button after ranking these realisations, thus they are not classed as ideal statistic

estimates Tbest). In any case, given that these are probabilities, this is a significant

error. It demonstrates that there may be a limit in the ability of experts to dis-

criminate between images with different spatial statistics using this algorithm. In an

inverse problem this feature of the solution would be called the null-space (Gubbins,

2004, p. 110). It is important to have identified such a ‘geological null-space’ be-

cause although the expert may not be able to discriminate between different spatial

statistics (or in practice, the realisations created using those statistics), these differ-

ences may be of importance to the application for which our geostatistical model has

been developed. For example, in the context of seismic inversion g might be used to

model the distribution of facies in a reservoir, and small differences in their spatial

distribution may be in-discriminable by experts but may cause large differences in

the flow characteristics of the reservoir model as a whole (Tsang, 1984).

In principle there is another possible explanation for the large RMSE values

which is totally unrelated to the experts’ abilities. It is possible that, for a certain

T vector, the produced realisations will virtually never contain a certain spatial

configuration (C ∈ C, say) of the pore-space variable within the neighbourhood

of cells, if the probability of that certain configuration occurring is extremely low.

This would imply that the corresponding probability p(gi|gNe(i) = C), that is the

corresponding tk in Ttarget, cannot have any effect on the rock pore-space image

realisation produced using that Ttarget vector. Thus the expert may find a Tbest

vector which produces images which almost perfectly match the target, but which

have a completely different value for this statistic. However, in our tests we ensured

that this was not the case when designing the particular Ttarget vectors (both the

‘crack-pore’ and ‘round-pore’ varieties) that we used: we checked that all possible

neighbourhood configurations (that is all elements in C) occurred frequently within

any realisation of g produced using the target statistics vector Ttarget. Hence it is

very unlikely that this is the cause of the final residual misfit which we observe.

Similarly, the limit is almost certainly not controlled by the mutation parameters.

Whilst it might be expected that larger values for α and β would cause the minimum

RMSE values to be large, since these parameters are interpreted as controlling the
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‘step’ length of the algorithm, we do not see any significant positive correlation

between the RMSE measures and these parameters. The fact that many of the

expert’s matches were confirmed by the consistency test indicates that the cause is

more likely to be intrinsic to the expert. This is certainly not to say that the limit

is equal to the intrinsic limit of the expert, but it is likely to be related to it.

In any case, it appears that experts are only able to discriminate between the

probabilities used in this geostatistical model at a minimum level of ∼ 0.1, or 10%,

using the algorithm developed here. This typical level of error is illustrated by

Figure 5.10 which shows a histogram of the minimum RMSE values obtained by

the experts. This would imply that there is a significant null-space in the experts’

abilities to choose between statistics (and by implication, between different statistical

models). These results may be able to be improved if formal rules of statistical expert

elicitation theory (e.g., Choy et al., 2009; Knol et al., 2010; Truong et al., 2013)

are applied. Such rules (procedures) aim to provide a framework for elicitation

experiments such that bias in estimates of expert knowledge about a variable (in our

case the T probabilities) is minimised. Despite the measures which we have taken

to try to ensure that the expert finds gbest realisations which truly match the target

geology (e.g., by using the consistency test) we have not considered explicitly the bias

which the user may have prior to, or develop during, the algorithm with respect to

how they compare different realisations. It is this type of bias which elicitation theory

aims to remove. Furthermore, formal elicitation theory could be used to combine

the opinion of multiple experts to obtain one single estimate of the ideal statistics

(Baddeley et al., 2004; Polson and Curtis, 2010; Allard et al., 2012). Experts could be

asked to rank each gj in a population as a group or individually, and their resulting

ranks combined. Other forms of information might also be elicited from the experts

rather than just visual comparisons, such as numerical information. Additionally,

further constraints may be derived from physical measurements or knowledge (and

hence modelling) of geological processes.

The two-stage GUI implementation has produced interesting results in itself. In

Figures 5.4 to 5.9 it can be observed that it is actually quite rare for the RMSE

measure to be reduced significantly in the second ‘fine tuning’ stage, compared to

the RMSE in the first stage (which was designed with only the intention of obtaining

a good starting population). This may be due to the expert concentrating on different

aspects of the geology depending upon the magnification of realisations presented

to them. At increased magnification the expert can pick out some fine details (such
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as complex shapes) more easily, but at lower magnifications the human eye may

more efficiently judge bulk statistical properties (such as the overall pore-matrix

proportions). Thus after the transition to the greater magnification, the loss of the

expert’s ability to evaluate these bulk features may in fact result in an increase

in RMSE. Nevertheless, we found this transition to be a valuable component of our

elicitation procedure as the rapid rate of convergence in the first stage reduced expert

fatigue, and thus also its concomitant biases. In future, it may be interesting to trial

a GUI which displays both low and high magnifications simultaneously to the expert.

We have shown that the direct elicitation of spatial statistics from a geological

expert is possible using the elicitation method. These spatial statistics may be used

to specify a geostatistical model which defines p(g). It is an important feature of

the algorithm employed that it allows the expert to interact directly with the opti-

misation without having to understand the underlying details of the geostatistical

model. In our example, the expert does not have to deal explicitly with probabil-

ities, and is instead able to concentrate on their area of expertise - the analysis of

(spatial) geological features. The example model which we have used is a practi-

cally employed multi-point geostatistical model used in both petroleum (Kjønsberg

and Kolbjørnsen, 2008; Okabe and Blunt, 2004; van der Land et al., 2013) and soil

geostatistics (Wu et al., 2004; Zhu et al., 2007; Li, 2007), and our algorithm has im-

mediate practical relevance for determining parameters for such applications. The

particular implementation of this model is quite parsimonious, however; the number

of free parameters in the model is quite low (|C| = 8) compared to other multi-point

geostatistical models.

There is an inherent advantage in having a smaller number of model parame-

ters since it means that exploring the parameter space and hence finding the ideal

statistics is easier using the genetic algorithm. Thus we avoid the so-called ‘curse

of dimensionality’ which effects many optimisation methods in higher dimensional

model spaces (Curtis and Lomax, 2001): the volume of the space to be explored grows

exponentially with the number of free parameters to be determined. As the number

of dimensions increases, as much as exponentially many more iterations might be

required to find the ideal statistics. This would be particularly problematic in this

case since the algorithm requires human input upon each iteration. Thus it is likely

that the elicitation method will be significantly more costly (in terms of expert time)

when applied to geostatistical models which require a large number of statistics (such

as full conditional distributions with large neighbourhood structures).

167



Chapter 5.9 BAYESIAN INVERSION OF SEISMIC DATA

0.06 0.1 0.14 0.18 0.22 0.26
0

1

2

3

4

5

RMSE

N
um

be
r 

of
 e

xp
er

ts

Student Version of MATLAB

Figure 5.10: A histogram of the lowest root-mean-square error (RMSE) between Tbest and the
target statistics vector Ttarget, found by each expert. For each expert the confirmed Tbest match
with the lowest RMSE was used. For experts 2 and 7 no confirmed Tbest match was found, thus the
unconfirmed Tbest match with the lowest RMSE was used. For expert 8 neither an unconfirmed
nor confirmed Tbest match was found, thus no RMSE value for that expert is included in this
histogram.

Although we demonstrated the elicitation method for a geostatistical model of a

rock’s pore-space, it can be immediately applied to determine statistics which can

be used to specify the geological prior distribution p(g) used in seismic inversion.

We showed in section 5.6.1 that the pore-space model is a particular instance of

the multi-point geostatistical model as described using full conditionals, thus it may

itself be applied in seismic inversion. However, the elicitation algorithm remains

untested for eliciting full conditional probabilities in their general form (equation

4.1). In this case efficient sequential sampling g ∼ p(g|T) would not be possible,

thus the elicitation algorithm may be slowed significantly. However, the algorithm

may be immediately applied to find the parameters of two-point statistical models

such as variograms since these typically require few defining statistics and can be

sampled from very rapidly (Caers, 2005, pp. 21-29).
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5.9 Summary

We have shown that spatial statistics can be elicited directly from a geological ex-

pert using an elicitation methodology based on the use of genetic algorithms. The

algorithm iteratively updates a population of candidate statistics vectors, using an

expert’s opinion of how well realisations generated with those statistics (using the

geostatistical model) match their envisagement of the appropriate spatial relation-

ships between the geological features. Thus, the algorithm allows experts to interact

directly with the statistical optimisation without having to understand the details

of the underlying geostatistical model.

The algorithm was used to estimate the statistics of a multi-point geostatistical

model, parametrised using conditional probabilities. 12 experts were asked to use

the algorithm to find the statistics suitable for representing a target pore-space im-

age. The image had known statistics, thus numerical convergence towards the true

answer could be calculated and monitored. 11 of the 12 experts were able to obtain

a match they deemed reasonable. Convergence rates were acceptable, with most

experts taking less than 40 iterations to find a matching realisation. This exper-

iment also assesses the intrinsic human uncertainty in comparing spatial statistics

when using the algorithm described. We found that there was a large misfit between

the ideal statistics (found by the expert) and the known statistics (those used to

generate the target image). The minimum root-mean-square error was typically >

0.1 for most experts. These errors are large considering the statistics were defined

as probabilities. More accurate discrimination is therefore likely to require informa-

tion obtained from complementary elicitation techniques, physical measurements or

knowledge of processes.

The method developed is general and may be immediately extended to the es-

timation of the parameters of other geostatistical models such as variograms. In

theory it is also possible to use the method to estimate the probabilities in full con-

ditional distributions. Thus this new elicitation method can potentially be used to

determine the geological prior distribution p(g) used in seismic inversion.
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Chapter 6

Discussion

6.1 Overview

Each of Chapters 2-5 has discussed, and offered a solution to, one of the research

questions posed in section 1.8. The purpose of this chapter is to discuss the overall

implications of the methodologies developed, and to identify topics for future work.

In section 6.2 we discuss how successfully each of the individual methodologies can

be incorporated into the two-stage Bayesian seismic inversion workflow described

in section 1.6. In section 6.3 we then discuss whether any of the methodologies

developed here have the potential to go beyond this two-stage inversion approach,

and permit an efficient ‘single-stage’ Bayesian seismic inversion method.

6.2 Integration of methods into the two-stage in-

version approach

In theory, all of the methods described in this thesis have a defined role within the

two-stage inversion workflow, as illustrated in Figure 1.1. The deep neural network

methodology (Chapter 2) may be used to improve the fidelity of the prior information

which is included in the elastic inversion portion of the method. Prior replacement

(Chapter 3) may be used to vary the prior which is implicit within cell-wise geological

inversion solutions (i.e., posterior estimates) in order to permit a spatially varying

prior. The results of neural network inversion can then be used within a stochastic

geological inversion methodology, such as the recursive algorithm or Gibbs sampling
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methodologies. The recursive algorithm (Chapter 4) permits exact sampling from

the geological posterior, with a prior defined using multi-point geostatistics, without

the need for potentially biased MCMC sampling. Finally, the elicitation algorithm

(Chapter 5) can potentially be used to determine the appropriate statistics for the

multi-point geostatistical model used in the chosen stochastic geological inversion

method (such as the recursive algorithm), directly from a geological expert without

the need for the production of a training image. However, there are numerous limi-

tations to these new methodologies which may restrict their immediate applicability

within the two-stage inversion method.

The definition of the deep neural network methodology in Chapter 2 is quite

restricted. The neural network was effectively defined as a 1-D recursive filter to be

applied, in isolation, down single traces of elastic parameter estimates obtained from

deterministic elastic inversion. Thus 2-D or 3-D lateral correlations are not accounted

for in its predictions. However, adding additional prior information about the lat-

eral correlations is not strictly necessary; in the example application to the Laggan

dataset lateral continuity exists in the elastic parameter estimates after transforma-

tion using the deep neural network operator, despite the fact that this operator is 1-D

in nature. This is because information about lateral correlations is introduced in the

original low-fidelity prior employed in deterministic elastic inversion. Thus extending

the neural network to function recursively in 2 or 3 dimensions is not immediately

necessary for this methodology to be applied to practical problems. However, such

an extension is necessary if we wish to apply high-fidelity prior information about

the lateral correlations (rather than just about the vertical ones).

What is more, we have only demonstrated the deep neural network method for

a relatively simple 1-D model (comprising few layers, for the Laggan dataset appli-

cation). We have not proven its worth for more complex 1-D models (i.e., contain-

ing more layers with more complex thickness relations, perhaps related to sequence

stratigraphic concepts). However, the results did demonstrate that the neural net-

work learnt the general ‘concept’ of layering; application of the neural network pre-

dicted three sand layers, whilst the model used to produce the training dataset had

only two sand layers. This is encouraging since it suggests that more complex mod-

els (including 2- and 3-D models) may be learnt by taking advantage of the spatial

repetition of similar geological features. Nevertheless more testing must be done to

prove the method’s worth for more complex models, and hence its use in practi-

cal two-stage seismic inversion. Because the deep neural network methodology was
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developed in the latter stages of the project its results were not tested as input to

the recursive algorithm method developed in Chapter 4. It would be interesting to

test whether using the improved elastic inversion results within geological inversion

would lead to an improvement in the latter inversion’s results.

The prior replacement operation developed in Chapter 3 permits the results of

efficient neural network inversion to be implemented within stochastic geological

inversion (as shown in Chapter 4). However, the most interesting questions about

prior replacement are concerned with its effect on the quality of the final estimate

of the so-called new posterior distribution, given the number of samples used to

determine the old posterior and the relative properties of the new and old prior

distributions (see Appendix F). This question is perhaps of less interest in the context

of practical Bayesian seismic inversion since in general the geological sample spaces

(i.e., G) within the individual cells are small, thus a very dense sampling over these

small sample spaces can be afforded, and the quality of the posterior solution can be

ensured regardless. However, as we have shown in Appendix F, prior replacement

may be used as a variance reduction technique similar to importance sampling, in the

context of general Bayesian inversion (where it is often the case that only a limited

number of samples from the posterior may be available).

The recursive algorithm developed in Chapter 4 was shown to be a useful bias-free

alternative to other Monte-Carlo techniques for determining the geological posterior.

However, in practice it is limited by the local prior property: even the computational

cost of the approximate version of the algorithm scales exponentially with the size

of the neighbourhood of the full conditional distribution. We only demonstrated the

algorithm for a 2-D subsurface model grid since this limitation is even more acute

for 3-D grids. In section 4.9 we suggested that the algorithm could be designed to

perform calculations on a geological sample space of reduced size (G ′), thus reducing

the computational cost of the algorithm. However, there is no clear mathematical

approach for developing such an approximation within the framework of the recursive

algorithm. A practical approach should be developed to permit efficient application

of the recursive algorithm with larger neighbourhood structures (as are commonly

encountered in practical geological inversion problems).

In our example application of the recursive algorithm we ignored the conditions

required by the Hammersley-Clifford theorem on the full conditional distributions:

we simply assumed that the full conditionals obtained (using the ‘event-counting’

method) from the training image were correct, and compensated for the resulting
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(small) errors in the calculated conditional probabilities by re-normalisation. We

currently have little understanding of the effect of this approximation. Furthermore,

we did not extend the algorithm to inversion for continuous geological parameters mi

(which are commonly the target in geological inversion). In principle this is not a dif-

ficult task: one need only replace gi with mi, and summations with integrals, within

the equations throughout Chapter 4. However, it is likely that the computational

cost of the algorithm in the continuous case would be more difficult to control, and

would require some method of parametrising the continuous geological parameter

space.

In Chapter 5 it was shown that the direct expert elicitation method could po-

tentially be used to obtain the p(g) distribution used in geological inversion. How-

ever, there are two practical issues which prevent its immediate use in the two-stage

workflow. The first of these is that it was only demonstrated practically for a partic-

ular geostatistical model (i.e., that in section 5.6.1). This model was a multi-point

geostatistical model, as defined in section 1.5.2, but defined with non-symmetrical

neighbourhood such that exact sequential sampling could be performed (to obtain

realisations which could be presented rapidly to the expert). There is no theoretical

reason why the method cannot be used to determine the probabilities in a full con-

ditional distribution with symmetrical neighbourhood (i.e., equation 4.1). However,

in this case sequential sampling could not be performed, and a Monte-Carlo sam-

pling algorithm would have to be used to obtain realisations. This would slow the

implementation of the elicitation method considerably, perhaps to the point where

it would be impractical for the expert to interact with. Thus application to such

multi-point geostatistical models (as used by the recursive algorithm in Chapter 4,

for example) may not be immediately possible; further research is required to make

the algorithm practical for general multi-point geostatistical models.

The second practical problem with the elicitation method is that the amount of

time required by the algorithm for elicitation increases rapidly with the number of pa-

rameters (statistics) in the geostatistical model (and hence it was only demonstrated

to work for a geostatistical model with a relatively low number of parameters). In

the case of multi-point geostatistics this implies that the method may be restricted

to full conditionals with small neighbourhood structures (either symmetric or non-

symmetrical). Again, further work is required before this algorithm may be applied

to the type of realistically-sized geostatistical models which are regularly used in

geological inversion (i.e., full conditionals with large neighbourhoods).
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6.3 Potential for new ‘single-stage’ method of in-

version

Both the deep neural network (Chapter 2) and recursive algorithm (Chapter 4)

methods offer novel approaches to the Bayesian seismic inversion problem. The deep

neural network method completely avoids traditional Bayesian inversion techniques

for elastic inversion since it is not based on the usual stochastic (i.e., MCMC) or

deterministic (gradient-ascent) methods. The recursive algorithm offers a different

Monte-Carlo technique, which avoids some of the bias issues associated with MCMC

approaches. However, the recursive algorithm can only be applied to the geological

inversion part of the two-stage inversion method, where the local likelihood property

can be assumed. Thus it would not seem to offer any alternative to the overall

two-stage seismic inversion approach which has been assumed in this thesis.

However, there is no such limitation on the deep neural network method; its

predictions are based on data which is distributed across (that is, down a trace in)

the model grid. As argued in Chapter 2, we could in principle train a deep neural

network to emulate the mapping from the AVA-type data to the posterior over the

elastic parameters, i.e., d→ p(e|d) from a finite set of training samples of [e,d]. Of

course this would require the extension of the deep neural network methodology to

take the AVA-type data as input and the redefinition of the neural network as a 3-D

recursive operator. What is more, this extended deep neural network methodology

could be used to perform Bayesian seismic inversion in a single step (rather than the

two-stage inversion assumed throughout this thesis): the neural network could be

trained to emulate the mapping from the AVA-type data to the posterior over the

elastic and geological parameters simultaneously, i.e., d→ p(g, e|d) from a finite set

of training samples of [e,g,d].

Unfortunately, we were unable to successfully apply a deep neural network trained

to take the AVA-type data as input or act as a 3-D (or even 2-D) recursive operator,

in practice. Fundamentally, this is due to the increased number of neural network

inputs required to redefine the neural network for these purposes. Extension to

single-stage seismic inversion would only increase this problem since it would effec-

tively increase the dimensionality of the data which must be processed by the neural

network (i.e., we would have to train it to take [e,g,d] as input rather than just

[e, ê]). Furthermore, if the aim of inversion were the geological parameters g then
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it would no longer be acceptable for the neural network to predict a single value as

output (i.e., the conditional expectation, as per the approximation in Chapter 2),

since an estimate of uncertainty is usually required on any estimate of g (as argued

in section 1.6). Instead, the neural network would have to predict the full posterior

probability distribution p(g, e|d) (as the mixture density network method does for

the ‘cell-wise’ geological posteriors in Chapter 3). This would considerably increase

the amount of training data (and hence the computational cost of training) required

to determine the neural network. Thus, it seems that a realistic ‘first step’ for future

work in this research area is to investigate how to modify the existing deep neural

network method as described in Chapter 2 (i.e., a 1-D operator which predicts a

single value, the conditional expectation, rather than the full posterior) to take the

AVA-type data as input to predict an estimate of the elastic parameters (including

high-fidelity prior information).
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Chapter 7

Conclusion

In this thesis Bayesian seismic inversion and its computational costs were reviewed.

The purpose of such inversions is to combine information from seismic data and prior

geological knowledge to determine a posterior probability distribution over the elas-

tic and geological parameters of the subsurface. Typically the subsurface is modelled

by a cellular grid containing thousands or millions of cells within which these pa-

rameters are to be determined. Consequently the computational cost of determining

the posterior distribution is usually very high. Thus in practice approximations to

Bayesian seismic inversion must be considered. A particular, existing approximate

workflow was described in this thesis: the so-called two-stage inversion method ex-

plicitly splits the problem into elastic and geological inversion stages. These two

stages sequentially estimate the elastic parameters given the seismic data, and then

the geological parameters given the elastic parameter estimates, respectively. In this

thesis a number of methodologies were developed which enhance the accuracy of this

approximate workflow.

Elastic inversion can be expensive since it involves inversion of the forward physics

relating the elastic parameters to the seismic data. Thus the prior information

(about the elastic parameters) employed is often simplified in order to reduce the

computational cost of Bayesian inversion in this stage. Therefore a methodology

was developed which efficiently transforms the results of such inversions (i.e., esti-

mates constrained only by simple geological prior information) into new estimates

containing sophisticated prior geological information. The transformation is per-

formed by recursively applying a deep neural network function to individual traces

of the elastic parameter estimates. The method was shown (by comparison to well-
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log measurements) to improve the resolution and accuracy of real elastic parameter

estimates made over a reservoir model. However, it was found that the accuracy of

the results of the method were dependent upon those of the original elastic inversion.

Thus in future the method should be extended to the direct inversion of the seismic

data for estimates of the elastic parameters (containing sophisticated prior geological

information), thus avoiding existing elastic inversion methods altogether.

It was described how so-called mixture density neural network (MDN) inversion

may be used to solve the geological inversion problem analytically (and thus very

rapidly and efficiently), but only if it is assumed that (i) there is no prior correlation

between the geological parameters in different grid cells, and (ii) the marginal dis-

tributions over the geological parameters in each cell are identical. Thus a so-called

prior replacement operation was developed which permits assumption (ii) to be re-

laxed, and hence increases the range of applicability of MDN inversion. The method

was demonstrated for a synthetic geological inversion problem and was shown to be

orders of magnitude faster than existing methods for varying the prior distribution

in MDN inversion.

Furthermore, it was shown that prior replacement can be used to integrate the

efficient MDN-derived solutions within general, stochastic geological inversion meth-

ods that are not restricted by assumption (i), above. Such general inversion methods

use Markov-chain Monte-Carlo (MCMC) sampling, thus they estimate the posterior

over the geological parameters by producing a correlated chain of samples from it. It

was shown that this approach can yield biased estimates of this posterior. Thus an

alternative method which obtains a set of non-correlated samples from the posterior

was developed, avoiding the possibility of bias in the estimate. The method uses

a recursive algorithm to calculate a set of conditional distributions which permit

exact, non-correlated sampling from the posterior. The computational cost of the

algorithm was shown to scale exponentially with the size of the model grid and the

range of spatial dependency of the multi-point geostatistical model used to specify

prior geological information. An approximate version of the algorithm was devel-

oped which could be applied to realistically-sized two-dimensional model grids. It

was applied to a synthetic geological inversion problem for lithology-fluid class over

such a grid. It compared well to the results of Gibbs sampling (a MCMC inversion

method) which demonstrated quite severe bias, which was absent in the results of

the recursive algorithm. However, the geostatistical model used had a relatively

small range of spatial dependency. Thus, future work must focus on extending this
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exact-sampling method to three-dimensional grids and to geostatistical models with

a larger range of spatial dependency.

The prior geological information used in seismic inversion is codified within the

geological prior probability distribution. It can be specified by a geostatistical model,

parametrised by a set of statistics appropriate for the given application. These

statistics can be derived from real images which bear similarity to the so-called target

geology anticipated within the subsurface (that is, the expected spatial patterns

within the subsurface geology, not its absolute distribution). Real training images

are not always available from which these statistics may be extracted, in which case

they may be generated by geological experts. However, this process can be costly and

difficult. Thus an elicitation method was developed which obtains the appropriate

statistics reliably and directly from a geological expert, without the need for training

images. The method estimates the set of statistics which, when used within a given

geostatistical model, generates realisations of the geological parameters which match

the expert’s mental envisagement of the target geology. The algorithm iteratively

improves (using a genetic algorithm) a set of vectors of statistics, based on the input

of the expert. It was demonstrated by providing 12 experts with a physical target

image (geology), and prompting them to determine the corresponding statistics. The

majority of experts were able to obtain a statistics vector which produced realisations

which, to the best of their ability, had geology which was indistinguishable from

that of the target image. Thus it was shown that the elicitation method may be

used to determine the statistics used to specify a (geostatistical model, and hence

a) geological prior distribution for seismic inversion. However, the speed of the

algorithm is dependent upon the number of statistics to be determined, thus future

work must focus on ensuring the applicability of the method to more sophisticated

geostatistical models.

Overall a number of methods were developed which aimed to enhance existing

Bayesian seismic inversion methodologies, particularly the two-stage inversion work-

flow. Additionally, in future the deep neural network methodology may offer a new

method for seismic inversion; it was argued that it may be adapted to perform inver-

sion in a single-step, by taking the seismic data as input and returning an estimate of

the posterior distribution over the elastic and geological parameters, simultaneously.

The methodologies developed in this thesis are quite general and may be applicable

to a variety of (spatial) Bayesian inversion problems.
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AVA forward model matrices

In order to be able to write the single matrix equation for the AVA forward model

(equation 1.6), a single reflectivity vector is constructed by concatenating the reflec-

tivity vectors for each of the angular ranges,

R(ex) =

rnear,x(ex)

rmid,x(ex)

rfar,x(ex)

 , (A.1)

and a corresponding wavelet block-matrix by concatenating the wavelet Toeplitz

matrices,

S =

snear 0 0

0 smid 0

0 0 sfar

 . (A.2)

Then the AVA-type data for the different angular ranges is arranged into a single

vector as

d(ex) =

dnear,x(ex)

dmid,x(ex)

dfar,x(ex)

 . (A.3)
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Back propagation

We seek to minimise the sum-of-squares error in equation 2.11 with respect to the

values of the network’s weights (stored in the matrix W where Wi,j,l = wlij). We

perform the minimisation using gradient descent thus we are required to calculate

the derivatives of the error function with respect to the weights. For a given weight,

this can be calculated by summation of each term in the sum in equation 2.11, dif-

ferentiated with respect to the given weight. Each of the terms in the sum represent

the error function for a single realisation of the input-output pair in the training

dataset, and can be written for the pth instance in the training dataset as

Ep =
KL∑
i=1

(vspi − aLi (usp; W))2, (B.1)

where vspi is the ith element of the pth output vector in the training dataset, aLi is the

ith output node (that is, node in layer L of the network) of the neural network and

usp is the (entire) pth input vector in the training dataset. Note that in section 2.7.1

(and hence equation 2.11) we used the notation q(u; W) = aL(u; W) to represent

the output of the neural network, but here we use aL = [aL1 , ..., a
L
KL ] to specifically

reference the individual variables in the output layer L (as in equation B.1).

The summation in equation B.1 is made over the KL elements in the output

vector (i.e., the number of nodes in the output layer of the network, discounting the

redundant bias node). In order to derive the back-propagation expression for the

derivative of equation B.1 with respect to a given weight, we begin by writing the

derivative of the jth variable in the lth layer of the network, alj, with respect to the

ith variable in the layer below, al−1
i . Given that we assume a sigmoidal activation
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function in equation 2.10, this derivative is equal to

dzlj

dzl−1
i

= wlijz
l
j

(
1− alj

)
. (B.2)

Similarly the derivative of alj with respect to the ith weight which connects directly

to it from the layer below, wlij, is given by

dzlj
dwlij

= al−1
i alj

(
1− alj

)
. (B.3)

We can then calculate the derivative of the error function with respect to wlij as

∂Ep
∂wlij

=
∂Ep
∂alj

∂alj
dwlij

. (B.4)

Now we define the so-called back-propagated error, denoted δli, as the derivative of

equation B.1 with respect to the ith variable in the lth layer of the network, ali, that

is

δli ≡
∂Ep
∂ali

, (B.5)

thus for all hidden layers, δli can be written using the sum rule for partial derivatives

as

δli =
Kl+1∑
j=0

∂Ep

∂al+1
j

∂al+1
j

∂ali
∀ l ∈ [1, ..., L− 1], (B.6)

then substituting equation B.2 into this we have that

δli = ali
(
1− ali

)Kl+1∑
j=0

wlij
∂Ep

∂al+1
j

∀ l ∈ [1, ..., L− 1]. (B.7)

It is clear that this expression for the back-propagated error for a node in layer l,

that is δli, contains the back-propagated error for all nodes in layer l + 1, that is
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δl+1
j ∀ j. Thus equation B.6 may be written as the recursive relation

δli = ali
(
1− ali

)Kl+1∑
j=0

wlijδ
l+1
j ∀ l ∈ [1, ..., L− 1]. (B.8)

This recursion may be initiated by calculating the back-propagated error (using its

definition in equation B.5) for the output layer, i.e., δl=Li , by directly differentiating

the error function in equation B.1 with respect to the output variables as

δl=Li =
∂Ep
∂aLi

= 2
(
vspi − aLi

)
. (B.9)

The recursively-calculated back-propagated error δli can be used within equation B.4

to calculate the derivative of the error function with respect to any weight. Thus

the gradient used for gradient descent in the weight space can be calculated where

each element is given by

∆wlij = −η 1

N

N∑
p=1

∂Ep
∂wlij

(B.10)

where η, the so-called learning rate parameter, is a non-negative constant which

controls the step-size of gradient descent.
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Stacked denoising-autoencoder

pre-training

Essentially, this method of pre-conditioning of W involves isolating layers of nodes

and training them sequentially to encode and decode the input portion of the dataset.

To do this, initially a new one-hidden-layer network is formed by setting its hidden

layer of nodes to be equal to the layer of nodes l = 1, and both its output and input

layers to be equal to the layer of nodes l = 0 (the input layer), in the original network.

This so-called isolated network is then trained using gradient-descent (using back-

propagation - see Appendix B) to encode and decode the input variable u. To do

this a separate training dataset is created comprising N pairs of us as both input

and output.

After training, all N instances of the hidden layer variables a1, generated by

supplying each of the N input vectors us in the training dataset to the isolated

network, are calculated and retained. Then as for l = 1, a new isolated one-hidden-

layer network is formed using the layer of nodes l = 2 as the hidden layer, and l = 1

as the input and output. Then this is trained to encode and decode the hidden layer

of nodes (variables) l = 1, using the N encoded a1 instances to form the training

dataset (that is, both its input and output). This process is then repeated for all

layers until l = L.

The isolated networks may be termed autoencoders since their inputs and outputs

are defined to be the same. However, so-called ‘masking’ noise is applied to their

training datasets, which means that a certain percentage φ of the inputs in their

individual (encoded) training datasets are set to zero. The use of this type of noise
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is effective at encouraging autoencoders to recover noiseless versions of noisy input

(van der Maaten et al., 2009). After each autoencoder is trained its weights are used

to form part of the initial W matrix used in training of the network as a whole,

that is for minimising equation 2.11 (with the input and output set equal to the

training instances of the input us and output vs variables, respectively). Full details

of the stacked-denoising autoencoder pre-training procedure can be found in van der

Maaten et al. (2009) or Vincent et al. (2010).
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Appendix D

Prior replacement in mixture

density network inversion

D.1 Preliminaries

In this appendix we define the prior replacement equations for the output of mixture

density network inversion in greater detail. For clarity we ignore the i subscript here

thus m and e should be read as mi and ei, respectively, in the following derivations.

We define two domains Mold and Mnew which correspond to the non-zero regions

of pold (m) and pnew (m), respectively. As described in section 3.4, pnew (m) must be

zero everywhere that pold (m) is zero, thus

Mnew ⊆Mold. (D.1)

In general the priors are referred to as pnew (m) and pold (m). However, we will em-

ploy Uniform distributions frequently so it is useful to define a Uniform distribution

for both of these now, to aid the analysis in the following sections. We define a

boxcar-like function δ, which has the properties

δ(m;M) =

0 for m /∈M

1 for m ∈M
(D.2)

where m is the model vector and M is a region of the space of possible m’s. Thus
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we define Uniform new and old priors for later use:

uold (m) = coldδ(m;Mold) (D.3)

unew (m) = cnewδ(m;Mnew) (D.4)

where the constants cold and cnew are probability densities, whose exact values are

related to the volumes of Mold and Mnew (but are not important here).

D.2 Calculating the posterior PDF with a Uni-

form ‘old’ prior

If Mnew ⊆ Mold is true and pold (m) = uold (m) then equation 3.9 can be simplified

because pold (m) is constant over the volume in which pnew (m) 6= 0. Substituting

equation D.3 into equation 3.5 we obtain

pnew(m|d) =
1

k

pnew(m)

pold(m)
pold(m|d) =

1

k

pnew(m)

coldδ(m;Mold)
pold(m|d). (D.5)

Given that Mnew ⊆Mold, pnew (m) has zero probability density throughout the extent

of the region of zero probability density of uold (m). Therefore, if we stipulate that

m ∈ Mnew, the box-car function is unnecessary and may be removed from equation

D.5 thus:

pnew(m|d) =
1

k

pnew(m)

cold
pold(m|d), m ∈Mnew. (D.6)

Similarly, substituting equation D.3 into equation 3.6 we obtain

k =

∫ +∞

−∞

1

k

pnew(m)

coldδ(m;Mold)
pold(m|d)dm, (D.7)

and again stipulating that m ∈Mnew allows the boxcar function to be removed and

the limits of integration to be set to Mnew thus

k =

∫
Mnew

pnew(m)

cold
pold(m|d)dm. (D.8)
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Combining equations D.6 and D.8 and cancelling the constants we obtain the equa-

tion

pnew(m|d) =
1

k′
pnew(m)pold(m|d) (D.9)

where the normalising constant is

k′ =

∫
Mnew

pnew(m)pold(m|d). (D.10)

It should be noted that the change in the limit of integration in equation D.8 may

not be trivial if the dimensionality of the model space is high and/or the Uniform

distribution has complicated bounds.

D.3 Calculating the posterior with a Uniform old

prior and Uniform new prior

Equations D.9 and D.10 can be used under the conditions that Mnew ⊆ Mold and

the old prior is Uniform, pold (m) = uold (m). If also the new prior is Uniform,

pnew (m) = unew (m), then the result is simpler. Combining equations D.4, D.9 and

D.10 we obtain

pnew(m|d) =
cnewδ (m;Mnew, pold) pold(m|d)

cnew
∫
Mnew

δ (m;Mnew) pold (m|d) dm
, (D.11)

As before m ∈Mnew so the boxcar functions may be removed, thus

pnew(m|d) =
1∫

Mnew
pold(m|d)dm

pold(m|d) (D.12)

Recognising that we have now a normalising constant in the denominator, which we

denote with k′′, we rewrite equation D.12 as

pnew(m|d) =
1

k′′
pold(m|d), m ∈Mnew (D.13)

Substituting equation 3.8 into D.13 yields

pnew(m|d) =
1

k′′

K∑
j=1

αjφ(m;µj,Σj), m ∈Mnew (D.14)
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where

k′′ =

∫
Mnew

pold(m|d)dm =

∫
Mnew

K∑
j=1

αjφ(m;µj,Σj)dm. (D.15)

Evaluation of the normalising constant k′′ requires only the integration of the series

of Gaussians (the GMM) in equation D.15 over the non-zero region of Mnew. This

implies the need to evaluate a definite integral of a multivariate normal distribution.

Whilst this does not have an analytic expression (Drezner, 1992), it has been widely

studied due to its importance in probability theory. Many algorithms exist for its

evaluation (Drezner and Wesolowsky, 1990; Genz and Bretz, 1999, 2002; Genz, 2004),

apart from simple numerical integration techniques (Riley et al., 2006, pp. 1000-

1009).

D.4 Calculating the posterior with Uniform old

prior and Gaussian new prior

If pold (m) is Uniform and pnew (m) is a Gaussian then we can use equation D.10 to

evaluate the normalising constant in equation D.9, and hence find the new posterior.

We must explicitly state that this new prior obeys Mnew ⊆ Mold, that is that its

non-zero extent is limited to that of the old prior. Thus, we define the new prior

as a truncated Gaussian - the product of a Gaussian and the boxcar-type function

defined in equation D.4:

pnew (m) = cφ (m;µnew,Σnew) δ (m;Mnew) (D.16)

where c is a (normalising) constant. We use the notation φ (m;µ,Σ) to denote a

normalised Gaussian function as a function of m with mean vector µ and covariance

matrix Σ. The subscript new indicates that we refer to parameters belonging to the

new prior, pnew. Substituting equations 3.8 and D.16 into equation D.9, the c con-

stant disappears henceforth (since it exists in both the numerator and denominator),

then stipulating that m ∈Mnew allows us to write

pnew(m|d) =
1

k′
φ(m;µnew,Σnew)

K∑
j=1

αjφ(m;µj,Σj), m ∈Mnew. (D.17)
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Similarly, for the normalising constant we can substitute equations D.16 and 3.8 into

equation D.10, and since m ∈Mnew remove the boxcar function, thus

k′ =

∫
Mnew

φ(m;µnew,Σnew)
K∑
j=1

αjφ(m;µj,Σj)dm. (D.18)

In order to simplify equation D.18 and subsequently to evaluate equation D.17 we

use the result that the product of two Gaussians is an un-normalised Gaussian

(Ahrendt, 2005). This allows us to obtain an analytical expression for a series of

single Gaussians within each of these equations. We can combine the Gaussians as

such (Ahrendt, 2005)

K∑
j=1

αjφ (m;µj,Σj)φ (m;µnew,Σnew) =
K∑
j=1

αjRjφ (m;µj
′,Σj

′) (D.19)

where the mean and covariance parameters are now given by

µ′j =
(
Σ′jΣnew

−1µnew
)

+
(
Σ′jΣj

−1µj
)

and Σ′j =
(
Σnew

−1 + Σj
−1
)−1

, (D.20)

and the constant Rj is given by

Rj = |2π (Σnew + Σj)|−
1
2 exp

[
−1

2
(µnew − µj)T (Σnew + Σj)

−1 (µnew − µj)
]
.

(D.21)

Upon substitution of the Gaussian product given in equation D.19, equation D.17

becomes

pnew (m|d) =
1

k′

K∑
j=1

αjRjφ (m;µj
′,Σj

′) (D.22)

and equation D.18 becomes

k′ =

∫
Mnew

K∑
j=1

αjRjφ (m;µj
′,Σj

′) dm. (D.23)

Equation D.23 can be evaluated by integration over the truncated Gaussians as in

the previous section. Once this is substituted into equation D.22 the full posterior

can be calculated.
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D.5 Calculating the posterior with both old and

new Gaussian priors

The special case of having both a Gaussian old prior pold (m), and a Gaussian new

prior pnew (m), is interesting since this may permit the normalisation constant to be

calculated analytically in equations 3.9 and 3.10. To see this we explicitly expand the

priors in terms of Gaussian kernels. In contrast to the previous section, we express

the new and old priors as full Gaussians so we do not need to truncate either prior

as they both span the infinite model space. Therefore

pold (m) = φ (m;µold,Σold) , (D.24)

and

pnew (m) = φ (m;µnew,Σnew) . (D.25)

Since both priors are Gaussian we substitute equations D.24 and D.25 into equation

3.10,

k =

∫ +∞

−∞

φ(m;µnew,Σnew)
∑K

j=1 αjφ(m;µj,Σj)

φ(m;µold,Σold)
dm. (D.26)

As previously, the Gaussians can be combined in some way to make the calculation

simpler. There are two ways of combining the Gaussians in equation D.26. We could

divide the GMM by the old prior and then multiply by the new prior, or we could

divide the new prior by the old prior and then multiply by the GMM. We discuss the

latter here as it is much simpler because it involves only the division of two single

Gaussians rather than involving the series of Gaussians in the division (since this is

more complicated than the multiplication of two Gaussians, as discussed below).

The multiplication of one Gaussian by another is always Gaussian (Bromiley,

2003), therefore if we can ensure that the division of the new prior by the old prior

is Gaussian then the whole operation will always yield a Gaussian. However, the

division of one Gaussian by another does not always yield a Gaussian. This can be

seen by first writing out the expression for a multivariate Gaussian

φ (m;µ,Σ) = (2π)−
n
2 |Σ|−

1
2 e−

1
2

(m−µ)T Σ−1(m−µ) (D.27)

where n is the dimensionality of m. For the expression in equation D.27 to behave

as a Gaussian the covariance matrix must be positive definite (Rue and Held, 2005).
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Then, since the inverse of a positive definite matrix is positive definite, the condition

mTΣ−1m > 0 ∀m ∈ Rd (D.28)

must be true for a valid Gaussian. We can write the division of the new by the old

prior in equation D.26 as a product but with the covariance matrix of the old prior

multiplied by -1, thus

k =

∫ +∞

−∞
φ (m;µnew,Σnew)φ (m;µold,−Σold)

K∑
j=1

αjφ (m;µj,Σj) dm (D.29)

and the Gaussian division within this can be written in the form of a single Gaussian,

i.e., φ (m;µnew,Σnew)φ (m;µold,−Σold) = φ (m;µ′,Σ′), thus we now have

k =

∫ +∞

−∞
φ (m;µ′,Σ′)

K∑
j=1

αjφ (m;µj,Σj) dm. (D.30)

The equations for the mean vector, covariance matrix and normalisation constant

(given in equations D.20 and D.21) for the product of two Gaussians are then valid

for φ (m;µ′,Σ′). Thus for the result of the Gaussian division, from equation D.20

we have

Σ′ =
(
Σ−1
new −Σold

−1
)−1

, (D.31)

and

µ′ =
(
Σ′Σ−1

newµnew
)
−
(
Σ′Σ−1

oldµold
)
. (D.32)

Clearly, Σ′ must be positive definite for the Gaussian division to yield a valid Gaus-

sian. In other words, the condition in equation D.28 must apply to Σ′. Thus substi-

tuting equation D.31 into D.28 yields

mTΣ′
−1

m = mT
(
Σ−1
new −Σ−1

old

)
m > 0 ∀m ∈ Rd (D.33)

which may be rewritten to give the condition as

mTΣ−1
newm−mTΣ−1

oldm > 0 ∀m ∈ Rd. (D.34)

If both the old and new priors are valid Gaussians then their covariance matrices are

positive definite and obey equation D.28. Thus equation D.34 cannot be true for all
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possible Σnew and Σold. In order to ensure that equation D.33 holds we could design

the new and old priors specifically by manipulating their eigen-decompositions, for

example (but we will not discuss such possibilities here). Usefully, if equation D.33 is

true, equation D.32 will always give a valid (i.e., real) mean vector for the resulting

Gaussian. Therefore, the values of the mean vectors of the old and new priors do

not effect whether the division of these two Gaussians yields another Gaussian or

not, and so the means of the old and new priors may have any value.
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Appendix E

Yin-Marion model

E.1 Yin-Marion shaly-sand model

The forward petrophysical model which we use is the Yin-Marion shaly-sand model

(Marion, 1990; Yin et al., 1993; Avseth et al., 2005). In this model two distinct

domains are defined for sand-shale mixtures: sandstones with a secondary shale

component, called shaly-sands, and shales with secondary sand component, called

sandy-shales. In the former domain clay particles are assumed to be within the pore

space of a sandstone frame. Increasing shale content fills this pore space, decreasing

porosity linearly. Thus in this case the porosity varies according to

φ = φs − C (1− φsh) , ∀ C < φs (E.1)

where C is the shale volume fraction, φs is porosity of the clean sandstone frame

and φsh is the intrinsic porosity of the shale. In the other domain, the sandy-shale

domain, the shale volume fraction is greater than the porosity of the clean sandstone

frame. In this case the rock is no longer considered to consist of a sandstone frame

with a pore space, but instead it is considered to be shale with sand inclusions. There

is no sandstone porosity, only isolated grains, and the only porosity which exists is

within the intrinsic pore space of the shale. The total porosity is then:

φ = Cφsh, ∀ C ≥ φs. (E.2)

The volume fractions of the components (i.e., shale, sand and pore fluid) predicted

by these equations can then be treated in a number of different ways to predict
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the S-wave impedance IS, and P-wave impedance IP , of the bulk rock. To do this,

we chose to use the upper Hashin-Shtrikman bound for the mixture in the shaly-

sand case and the lower bound in the sandy-shale case (Avseth et al., 2005) to

approximately simulate the two different assumed micro-geometries of the domains

(see Mavko et al. (2009), for an explanation of the micro-geometry implied by these

bounds). The densities can be calculated with the volume fractions and the known

densities of the constituents. We assumed a constant mineralogy of the shale and

sand components in this model. However, we assumed that the pore fluid consisted

of a water and a gas phase so a third model parameter is introduced: the water

saturation, Swt ∈ [0, 1]. The elastic moduli and densities of the shale, sand and

pore-fluid (mixture of gas and water) could be taken from examples in the literature

(e.g., Mavko et al., 2009). Note that the intrinsic porosity of shale is kept constant

so in total only three model parameters could vary and we write the rock-physical

parameter vector, at a cell in a subsurface model, as mi = [m1,m2,m3] = [C, φs, Swt].

E.2 The probabilistic forward model

We symbolically write the Yin-Marion shaley-sand model described above as f(mi).

By definition, it is a deterministic model for predicting IS and IP given mi, but

we included a random element by adding random Gaussian noise (n) to its output.

Thus the full uncertain forward model is written

ei = f(mi) + n, n ∼ φ (0,Σei
) , Σei

=

[
σ2
P 0

0 σ2
S

]
(E.3)

where f(mi) represents the Yin-Marion shaley-sand model, φ() has its usual mean-

ing as a Gaussian function, mi = [m2,m1] is the vector of model (i.e., continuous

geological) parameters and ei = [IP , IS]i is the elastic parameter (impedances) vec-

tor. The random Gaussian noise is uncorrelated between IS and IP , and is specified

by the standard deviation of error on IP , σP = 1.5 × 104s−1m−2kg and on IS,

σS = 1.0× 104s−1m−2kg. Since the noise is Gaussian, an appropriate PDF describ-

ing the probability of the elastic parameters, given the model parameters at cell i, is

written

p(ei|mi) =
|Σei
|− 1

2

2π
exp

(
−1

2
−(ei − f(mi))

TΣei

−1 (ei − f(mi))

)
(E.4)
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Appendix F

Quality in the results of prior

replacement

F.1 Quality of the posterior estimates from prior

replacement

In the results obtained for single MDN inversions in section 3.7.1 (Figures 3.2 and

3.3) we observed qualitatively that prior replacement may out-perform prior-specific

training in some aspects of the quality of the estimated posterior distribution. We

hypothesised in section 3.8.2 that this effect could be attributed to the difference in

the distribution of samples used to train the network in each case. We now test this

hypothesis by investigating a Bayesian inverse problem in which sampling (rather

than a neural network) is used to estimate a single posterior PDF.

To do this we suppose that we have a likelihood distribution which we can only

evaluate up to a multiplicative constant, and a prior which we know parametrically.

Consequently, we do not know the posterior (equation 3.3) analytically (i.e., we do

not know the normalising constant - as is often the case in practical problems). The

usual approach to such problems (Mosegaard and Sambridge, 2002) is to sample

directly from the posterior using Monte-Carlo (MC) methods in order to estimate

the posterior density. We call this direct estimation. However, since the prior is

known analytically, the posterior can also be estimated by prior replacement. To do

this we would construct an old posterior using the appropriate likelihood (i.e., that

used in direct estimation) and a broad old prior (see equation 3.11, for example).

We would then sample from this old posterior and estimate its density. Then the
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prior replacement equations would be applied to replace the old prior with the new

prior (i.e., the appropriate prior used in direct estimation). Henceforth we refer to

this as indirect estimation.

Direct and indirect estimation are equivalent to prior-specific training and prior

replacement, respectively, in the discussion of MDN inversion in Chapter 3. The

only difference now is that we assume that the samples are being used to directly

estimate a posterior for a given datum, rather than to estimate the parameters of a

neural network which will predict the posterior for any data.

Henceforth, we analyse the quality of the posterior estimate obtained using direct

and indirect estimation for a single continuous model parameter, m. For simplicity,

we also assume that the data vector consists of only one element, thus the data in

this ‘toy’ inverse problem is written d. Furthermore we assume that the forward

function is such that it describes an unnormalised Gaussian over m (for an example

of such a likelihood function, see Tarantola (2002, pp. 64-68)). This likelihood may

be written as the product of a normalised Gaussian and a constant,

p (d|m) = c1φ (m;µL,ΣL) . (F.1)

We assume also that the new prior is Gaussian, thus

pnew (m) = φ (m;µB,ΣB) . (F.2)

The new posterior can then be formed by substituting equations F.1 and F.2 into

equation 3.3. Cancelling the c1 constants from the denominator and numerator of

the resulting expression we obtain the normalised product of two Gaussians, which

is another Gaussian

pnew (m|d) =
φ (m;µB,ΣB)φ (m;µL,ΣL)∫

m

φ (m;µB,ΣB)φ (m;µL,ΣL)

= φ (m;µP ,ΣP ) , (F.3)

where the new posterior Gaussian will have mean and variance given by

ΣP =
(
ΣB
−1 + ΣL

−1
)−1

, µP = ΣP

(
ΣB
−1µB + ΣL

−1µL
)

(F.4)

(Bromiley, 2003). It should be noted that generally if we assume Gaussian forms for
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our prior, likelihood and hence posterior there is no need for Monte-Carlo sampling

and PDF estimation. However, we use this toy problem to investigate the difference

between direct estimation (prior-specific training) and indirect estimation (prior re-

placement). We now describe direct and indirect estimation in more detail, and then

also the methods by which we can compare the quality of the posterior estimates we

obtain in each case.

F.1.1 Direct estimation

In direct estimation a set ofN samples, M1, ...,Mi, ...,MN , are made directly from the

new posterior, i.e., Mi ∼ pnew (m|d). These are then used to estimate the parameters

of the new posterior distribution. We denote the estimate

p̂D (m|d) = φ
(
m; µ̂PD

, Σ̂PD

)
≈ pnew (m|d) (F.5)

where the maximum likelihood estimates (MLE) of the mean and variance are related

to the N samples by

µ̂PD
=

1

N

N∑
i

Mi, Σ̂PD
=

1

N − 1

N∑
i

(Mi − µ̂PD
)2, (F.6)

and these are therefore termed the direct estimators.

F.1.2 Indirect estimation

In indirect estimation samples are made from an old posterior and are used to es-

timate that distribution. Then prior replacement is used to determine an estimate

of the new posterior by emplacing the appropriate new prior. Initially, we assume

an infinitely-broad, Uniform old prior thus the PDF is constant (and improper, see

e.g., Hobert and Casella (1996); Daniels (1999); Sun et al. (2001))

pold (m) = c2. (F.7)
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This is then used to construct the old posterior: by substituting equations F.1 and

F.7 into equation 3.2, and cancelling constant terms we obtain a Gaussian

pold (m|d) =
c1c2φ (m;µL,ΣL)∫

m

c1c2φ (m;µL,ΣL) dm

= φ (m;µL,ΣL) . (F.8)

This is simply a normalised version of the likelihood. As in direct estimation, we

then use N samples from this distribution to obtain an approximation to it, which

we denote

p̂old (m|d) = φ
(
m; µ̂L, Σ̂L

)
≈ pold (m|d) . (F.9)

The MLE estimators for the variance and mean parameters are given by

µ̂L =
1

N

N∑
i

Mi, Σ̂L =
1

N − 1

N∑
i

(Mi − µ̂L)2 (F.10)

where Mi now represents a set of N samples made from p̂old (m|d). We now perform

prior replacement in order to obtain an estimate of pnew (m|d). To do this we sub-

stitute the expressions for the approximate old posterior, the old prior and the new

prior (equations F.9, F.7 and F.2 respectively) into equation 3.5 such that we obtain

an approximation for the new posterior given by

p̂I (m|d) =
1

k

φ (m;µB,ΣB)

c2

φ
(
m; µ̂L, Σ̂L

)
≈ pnew (m|d) (F.11)

where p̂I (m|d) is used to denote this (indirect) approximation to pnew (m|d). Making

the same substitutions in equation 3.6 yields the approximate normalising constant

k ≈
∫ +∞

−∞

φ (m;µB,ΣB)

c2

φ
(
m; µ̂L, Σ̂L

)
dm. (F.12)
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Substituting equation F.12 into equation F.11 and cancelling the constant old prior,

c2, we obtain

p̂I (m|d) =
φ (m;µB,ΣB)φ

(
m; µ̂L, Σ̂L

)
∫∞
−∞ φ (m;µB,ΣB)φ

(
m; µ̂L, Σ̂L

)
dm

= φ
(
m; µ̂PI

, Σ̂PI

)
, (F.13)

which we have recognised as a normalised product of two Gaussians, which is a

Gaussian. As such we can obtain the mean and variance using the standard identities

for a Gaussian multiplication (Bromiley, 2003) as

Σ̂PI
=
(

ΣB
−1 + Σ̂−1

L

)−1

, µ̂PI
= Σ̂PI

(
ΣB
−1µB + Σ̂−1

L µ̂L

)
, (F.14)

and these are therefore termed the indirect estimators.

F.2 Comparing quality

To compare the quality of the two posterior estimates we calculate the variance and

bias of the estimators (the mean and variance parameters) in each case. If we use

the example of the variance parameter Σ, and the estimator of it Σ̂, then the bias

and the variance of the estimator are defined as

bias
(

Σ̂
)

= E
[
Σ̂
]
− Σ, (F.15)

var
(

Σ̂
)

= E

[(
E
[
Σ̂
]
− Σ̂

)2
]
. (F.16)

Exact analytical expressions exist for these quantities for given N in the case of the

direct estimators: they are simply those for a Gaussian which are well known (Ulrych

et al., 2001, e.g.,), thus the biases are

bias (µ̂PD
) = bias

(
Σ̂PD

)
= 0. (F.17)

and the variances are

var (µ̂PD
) =

ΣP

N
, (F.18)
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var
(

Σ̂PD

)
=

2ΣP
2

N − 1
. (F.19)

No such exact analytical expressions exist for the bias and variance for the indirect

estimators. However, we have derived approximations to these in Appendix G based

on third-order Taylor expansions taken about the expected values of the µ̂L and Σ̂L

estimators (Oehlert, 1992; Van der Vaart, 2000):

bias (µ̂PI
) ≈ 1

N − 1
(µL − µP )

(
Σ−1
L ΣP − Σ−2

L Σ2
P

)
, (F.20)

bias
(

Σ̂PI

)
≈ 2

N − 1

(
Σ−2
L ΣP

3 − Σ−1
L ΣP

2
)

(F.21)

and the variances are

var (µ̂PI
) ≈ (µP − µL)2 2Σ2

PΣ−2
L

N − 1
+

Σ2
PΣ−1

L

N
, (F.22)

var
(

Σ̂PI

)
≈ 2

N − 1

Σ4
P

Σ2
L

. (F.23)

Another measure of approximation quality is the Kullback-Leibler (KL) diver-

gence (Kullback and Leibler, 1951), which measures the difference between two

PDFs. Suppose that we make an estimate p̂(m|d) of a distribution p(m|d). The

KL divergence between the two, DKL [p(m|d) || p̂(m|d)], is given by

DKL [p (m|d) || p̂ (m|d)] =

∫ +∞

−∞
ln

(
p(m|d)

p̂(m|d)

)
p(m|d) dm. (F.24)

This quantity is used extensively to measure approximation quality because of its

intuitively appealing interpretation as the amount of information lost when approx-

imating p(m|d) by p̂(m|d) (Hershey and Olsen, 2007). Thus we interpret the KL

divergence as a measure of the overall ‘goodness of fit’ of an approximate distribu-

tion. However, the advantage of the bias and variance quantities is that they are

expected measures of the accuracy and precision, respectively, given a certain number

of samples N . The KL divergence is only defined between two known distributions,

therefore what we require is the expected KL divergence given that p̂(m|d) has been

estimated using a certain number of samples N . No analytical expression exists for

this quantity, thus we have to obtain an estimate of it empirically. That is to say, we

must make a large number, L, of new posterior estimates and use this population to
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estimate the average value, which would be calculated from the L estimates as

E [DKL [p (m|d) || p̂ (m|d)]] ≈ 1

L

L∑
l

DKL [p (m|d) || p̂l (m|d)] (F.25)

where p̂l(m|d) is the lth estimate of the posterior. Thus in practice we made an

estimate of the posterior L times using both methods and calculated

DKL [p(m|d) || p̂I,l(m|d)] and DKL [p(m|d) || p̂D,l(m|d)]

each time. Then from these two sets of L KL divergences we could calculate

E [DKL [p(m|d) || p̂I(m|d)]] and E [DKL [p(m|d) || p̂D(m|d)]] .

The number of estimates of the posterior we made in each case was L = 1 × 104,

whilst the number of samples made in each method was chosen to be N = 10. The

analytical quantities (equations F.17 to F.23) can be calculated without any actual

sampling. However, they do still require that the number of samples be specified.

Thus when calculating these we chose N = 10 in both direct and indirect estimation

for consistency.

It is clear that the relative properties of the old posterior (that is, the likelihood)

and the new prior may effect the quality of the approximation derived by each

method. Thus we do not calculate the quantities described above for just a single

set of new and old posteriors; instead we vary these distributions systematically.

Thus we repeated the above whilst varying the likelihood’s parameters (the prior

was kept constant since we are only interested in investigating the effect of the

relative relationship of new prior and likelihood). We first investigated the effect

of µL in isolation. To do this µL was varied and ΣL kept constant. Secondly, we

investigated the effect of ΣL in isolation, by varying ΣL and keeping µL constant.

The results are described below.

F.3 Results

Firstly we varied µL in the range [0, 4] at intervals of 0.1. The variance of the likeli-

hood was kept constant at ΣL = 0.5. The prior distribution was fixed with µB = 2

and ΣB = 0.75. This defined 41 different new posterior distributions, two examples of
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which are plotted in Figure F.1(a) with the prior and likelihood distributions. The

approximate expected Kullback-Leibler divergences for each of these scenarios for

both methods, E [DKL [p(m|d) || p̂I(m|d)]] and E [DKL [p(m|d) || p̂D(m|d)]] are plot-

ted in Figure F.1(b). The analytically calculated variance and bias of the estimators

for both methods (Σ̂PD
, µ̂PD

, Σ̂PI
and µ̂PI

) are plotted for comparison in Figure F.1

(c)-(f).

We then carried out exactly the same procedure except varying ΣL rather than

µL. ΣL was varied in the range [0 4] at intervals of 0.1. The mean of the likelihood was

kept constant at µL = 2. The prior in this case had parameters µB = 4 and ΣB = 1.

Again this defined 41 different new posterior distributions, two of which are plotted in

Figure F.2(a) with the prior and likelihood distributions. The approximate expected

Kullback-Leibler divergences for each of these scenarios, E [DKL [p(m|d) || p̂I(m|d)]]

and E [DKL [p(m|d) || p̂D(m|d)]] are plotted in Figure F.2(b). The analytically cal-

culated variance and bias of the estimators (Σ̂PD
, µ̂PD

, Σ̂PI
and µ̂PI

) are plotted for

comparison in Figure F.2 (c)-(f).

F.4 Interpretation of quality comparison results

We can make useful observations about the relative values of the variance and bias of

the estimators Σ̂PD
, µ̂PD

, Σ̂PI
and µ̂PI

from their analytical expressions in equations

F.17-F.19 and F.20-F.23 and the results in Figures F.1 and F.2.

When comparing equation F.17 to equation F.20, we see that |bias (µ̂PI
) | >

|bias (µ̂PD
) |. However, bias (µ̂PI

) will be zero in two non-trivial cases: where either

(i) µP = µL, or (ii) ΣP = ΣL. From equation F.4 we can see that the former case

implies that µB = µL, and that the latter case implies ΣB = ∞ (i.e., the prior is

flat). In Figures F.1(e) and F.2(e) we observe the bias of those estimators behaving

in this way.

Inspecting equations F.18 and F.22 we see that it is possible that var (µ̂PI
) <

var (µ̂PD
), and that this will tend to be the case where (i) µP → µL or (ii) ΣL >> ΣP .

Again from equation F.4 we can see that the former case implies that µB → µL, and

that the latter case implies ΣL >> ΣB. We can observe this behaviour in Figures

F.1(f) and F.2(f).

Similarly, we see that generally bias
(

Σ̂PI

)
> bias

(
Σ̂PD

)
, and the only non-trivial

exception to this is when ΣL = ΣP , where bias
(

Σ̂PI

)
= 0. Such behaviour can be
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Figure F.1: Measures of the quality of the posterior estimate obtained using direct and indirect
estimation were calculated for a range of posteriors, defined by: µL ∈ {0, 0.1, ..., 4} whilst µB =
2, ΣB = 0.75 and ΣL = 0.5. (a) the old (φL) and new posterior (φP ) PDF pairs for µL =
0.5 (dashed lines) and µL = 3.5 (solid lines). The prior PDF (φB) is plotted as a dotted bold
line. (b) Average Kullback-Leibler divergences for the two methods: E [DKL [p(m|d)||p̂I(m|d)]] and
E [DKL [p(m|d)||p̂D(m|d)]]. (c) bias and (d) variance of Σ̂PD

and Σ̂PI
. (e) bias and (f) variance of

µ̂PD
and µ̂PI

. In plots (b) to (f), solid lines are results obtained for the direct estimation posterior
estimate (i.e., PD), and dashed lines are for the indirect posterior estimate (i.e., PI).
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Figure F.2: Measures of the quality of the posterior estimate obtained using direct and indi-
rect estimation were calculated for a range of posteriors, defined by: ΣL ∈ {0, 0.1, ..., 4} whilst
µB = 4, ΣB = 1 and µL = 2. (a) the old (φL) and new posterior (φP ) PDF pairs for ΣL = 1
(dashed lines) and ΣL = 2.5 (solid lines). The prior PDF (φB) is plotted as a dotted bold
line. (b) Average Kullback-Leibler divergences for the two methods: E [DKL [p(m|d)||p̂I(m|d)]]
and E [DKL [p(m|d)||p̂D(m|d)]]. (c) bias and (d) variance of Σ̂PD

and Σ̂PI
. (e) bias and (f) variance

of µ̂PD
and µ̂PI

. In plots (b)-(f) solid lines are results obtained for the direct estimation posterior
estimate (i.e., PD), and dashed lines are for the indirect posterior estimate (i.e., PI).
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observed in Figures F.1(c) and F.2(c). However, a more useful observation can be

made about the variance of the variance estimator, by beginning with the observation

that multiplication of two Gaussians always yields a Gaussian with lower variance

than either of the two Gaussians which were multiplied together (this can be seen

immediately from equation F.4). This implies (given the Gaussian multiplication in

equation F.3) that ΣP < ΣL. Therefore dividing equation F.23 by equation F.19 we

find that
var
(

Σ̂PI

)
var
(

Σ̂PD

) =
Σ2
P

Σ2
L

< 1. (F.26)

Thus to third order the variance on the variance estimator in the indirect estima-

tion method is always less than that in the direct estimation (i.e., var
(

Σ̂PI

)
<

var
(

Σ̂PD

)
). Such behaviour can be observed in Figures F.1(d) and F.2(d).

The curves corresponding to the indirect estimators in Figure F.2(c), (d), (e) and

(f) all show similar features. All increase (relatively) rapidly from zero at ΣL = 0

to reach a maximum approximately where ΣB = ΣL and then decrease (relatively

slowly) as ΣL → ∞. This effect can be understood, equally well for the bias and

the variance, if we consider two end-member examples. The first is when the prior

has infinite variance (it is ‘flat’) and the likelihood has zero variance (it is a delta

function). No error (which would give rise to bias or variance) can be made when

sampling from the old posterior (i.e., the likelihood), and we obtain a perfect poste-

rior upon applying Bayes’ rule. The second end member case is when the likelihood

is flat and the prior is a delta function. In this case errors can be made when sam-

pling the likelihood, but they are irrelevant since the prior (which we multiply by

in Bayes’ rule) is a delta function, and again we obtain a perfect posterior. The

variance and bias of the estimators must go to zero at these end members (which

correspond to either end of the horizontal axes). Between these two end members

two processes compete: (i) as the likelihood variance decreases (relative to the prior

variance) fewer errors occur in sampling, and (ii) as the likelihood variance increases

(relative to the prior variance) these errors matter less. Thus one might expect these

two competing effects to balance around the point at which the variances are equal

(which is what we observe at the maxima where ΣL = 1 = ΣB).

In Figure F.1(f) we observe that var (µ̂PI
) tends to be lower than var (µ̂PD

) where

the likelihood mean approaches the prior mean. This makes intuitive sense since in-

direct estimation makes an unbiased estimate of the mean of the likelihood. Equation
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F.4 shows that as the likelihood mean approaches the prior mean, the posterior mean

approaches the likelihood (and prior) mean. Thus the indirect estimate approaches

a point at which it is making a direct and unbiased estimate of the posterior mean.

Similarly the same mechanisms can used to explain the behaviour of bias (µ̂PI
) in

Figure F.1(e). Here we see that bias (µ̂PI
) goes (linearly) to zero when the likelihood

and prior means are equal.

As a consequence of the behaviour of the estimators described above, the overall

goodness-of-fit measure, DKL, tends to be lower in the indirect estimation (prior

replacement) than in the direct estimation method whenever the likelihood variance

is relatively large (compared to the prior variance) and/or the likelihood mean ap-

proaches the prior mean. This behaviour can be seen in Figures F.1(b) and F.2(b).

Although DKL is a useful, well-understood measure, it is of limited analytical use

here as it cannot easily be related to the parameters of the Gaussian distributions (in

the indirect estimation method). However, it neatly encapsulates the other results

derived above for the biases and variances.

We found (in results not reproduced here) that varying the number of samples

made, N , had little impact on the relative properties of direct and indirect estimation.

N simply acts as a scaling factor in equations F.17-F.19 and F.20-F.23 (thus the

variances, biases and DKL all reduced with increasing N in both methods). It should

also be noted that the choice of a maximum likelihood estimator here is somewhat at

odds with the Bayesian framework used thus far (Ulrych et al., 2001). However we do

not anticipate that attaching prior distributions to the parameters (the variance and

means) could change the outcome of the analysis. For example, we could choose to

use a Bayesian estimator such as the maximum a posteriori (MAP) estimator for the

variance assuming a Jeffrey’s prior (Lupton, 1993; Jeffreys, 1998) but we would not

see any practical difference in the analytical results since this would simply change

N to N + 1 in the expressions above (Ulrych et al., 2001).

In the next section we discuss the implications of these results for the application

of prior replacement in MDN inversion (and hence geological inversion), and possible

general implications for Bayesian inversion. Thus we reiterate here that direct esti-

mation is equivalent to prior-specific training since no old posterior is used: samples

are made directly from the new posterior. Also indirect estimation is equivalent to

prior replacement since samples are initially made from the normalised likelihood

distribution (equivalent to the old posterior with a flat old prior); then the old prior

is replaced by the new prior analytically.
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F.5 Discussion

It is important to note that in the results above we have assumed that we have a

likelihood distribution for which we only know the unnormalised density; thus we

may only estimate an old or new posterior density by first sampling from it (using MC

techniques). In contrast, any prior distribution we use (whether it be the old or the

new) is assumed to be known parametrically, thus we may manipulate it algebraically

with respect to the estimate of the old posterior. In principle prior replacement may

be performed even if the old and/or new prior is not known analytically, but the

results we have obtained for this investigation of the quality of the approximation

in either case would not be relevant. This is because the results assume that the

Gaussian new prior is known exactly, and therefore the mean and the variance of the

new prior are not random variables in our formulation. However, prior information

is very often specified parametrically in geological inversion. For example, spatial

correlation is often specified using Gaussian Markov random fields (Rue and Held,

2005; Eidsvik et al., 2012; Sun et al., 2012). Hence this is not a major practical

limitation to the significance of these results.

If we assume that these results relating prior replacement and quality of the

final posterior estimate are applicable not just for single Gaussians but for GMMs

then we can explain qualitatively the results observed when prior replacement was

applied to the results of MDN inversion (compared to the results of prior-specific

training) in section 3.7.1. In Figure 3.3 we saw that a low probability lobe was better

resolved by prior replacement than by prior-specific training. In that case the old

posterior in Figure 3.1 (equivalent to the likelihood in the results above) had higher

variance than the new prior in Figure 3.3(a), but had a similar mean. Thus from the

estimation quality results obtained here we expect that if the old posterior variance

is sufficiently large and the means sufficiently similar, that not only would the new

posterior variance be more certain but also less biased in the prior replacement

result (indirect estimation) than in prior-specific training (direct estimation) result.

However, we would also expect that the mean would be more biased and uncertain

when using prior replacement since the means of the old posterior and new prior

are not identical. Thus the overall shape of the new posterior distribution should

be better resolved at the expense of the exact shape of the high probability density

area(s). In Figure 3.3(c) and Figure 3.3(d) this is what we observe: the peak is less

well defined but the low probability lobe is much better defined when using prior
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replacement.

The results of the investigation into estimation quality may have further im-

plications. For example, suppose that we were performing such an inversion with

Gaussians: can we predict a-priori whether the solution quality will be better if we do

direct estimation or indirect estimation (prior replacement)? This depends on what

aspect of the quality of the posterior estimate is desirable. The bias of the sample

mean and variance is always lower for direct estimation than indirect estimation,

but the variance of the sample variance is always less in the latter. Which method

yields lower variance on the sample mean depends upon the posterior (i.e., the rel-

ative properties of the likelihood and prior), thus we cannot predict this a-priori.

Similarly, we cannot predict which method will yield the smallest Kullback-Leibler

divergence without calculating the posterior distribution’s parameters.

Of course if we were to ask which method is better for a realistic inversion for

a non-Gaussian likelihood we cannot conclude anything definitive from our results.

They do support the intuitive supposition that prior replacement would yield more

biased results than direct estimation. However, they also show that prior replace-

ment can yield lower variance estimators and better overall goodness-of-fit (Kullback-

Liebler divergence) for the Gaussian case. Thus for the general case it is not obvious

which method to choose if these criteria are deemed to be important. In cases where

the likelihood is not known analytically and we must use sampling methods, this

conundrum would be useful to resolve, especially if only a limited number of samples

can be made, such as in tomography problems in geophysics (Zhang et al., 2013). To

our knowledge this is the first time that this issue has been raised in the literature; it

should be investigated in future studies, as it may allow us to perform some Bayesian

inversions more efficiently.

There is clearly similarity between prior replacement and the well-known Monte-

Carlo technique of importance sampling. Importance sampling transforms samples

made from a sampling (so-called ‘instrumental’) distribution such that they may

be used to estimate the properties of another (so-called ‘target’) distribution. Each

individual sample made from the instrumental distribution is transformed by weight-

ing it by the ratio of its probability evaluated using the target distribution, to its

probability evaluated using the instrumental distribution. Then calculation of the

estimator is made using these transformed samples. As we have demonstrated for

prior replacement, importance sampling can be used as a variance reduction tech-

nique. To do this the instrumental distribution should be chosen such that samples
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Figure F.3: An empirical comparison of prior replacement and importance sampling. The results
for indirect estimation (prior replacement) have been replicated from Figure F.1 (dotted line): (a)
bias and (b) variance of µ̂PI

for a range of posteriors, defined by µL ∈ {0, 0.1, ..., 4} whilst µB = 2,
ΣB = 0.75 and ΣL = 0.5. The equivalent results for the importance sampling estimator µ̂PIS

have
been superimposed (solid line), where the old posterior (that used in indirect estimation) has been
used as instrumental distribution.

are made more frequently if they are (somehow) more ‘important’ to the estimate

required of the target distribution (compared to simply sampling directly from the

target distribution). A trivial example is when attempting to estimate the mean of

a target distribution. In this case if we choose an instrumental distribution which

is non-zero only at the target distribution’s mean value then this makes the mean

estimator’s variance zero (when such samples are used to estimate the mean after

multiplication with the appropriate weights).

Given the above definition of importance sampling, one might expect it to yield

similar, perhaps identical, results to prior replacement if the instrumental distribu-

tion is made equal to the old posterior as used in prior replacement. We now explore

this hypothesis in the context of the Gaussian posterior estimation problem used

above to compare direct and indirect sampling (i.e., prior replacement). To do this

we first describe in more detail the importance sampling method for estimating µP

(i.e., the mean of pnew (m|d) = φ (m;µP ,ΣP )).

As stated above we use as the instrumental distribution the old posterior dis-

tribution which, as defined earlier, is simply the normalised likelihood pold (m|d) =

φ (m;µL,ΣL). To estimate µP using importance sampling we begin by making N

samples of m, M1, ...,Mi., ...,MN , from the instrumental distribution, where

Mi ∼ pold (m|d) . (F.27)
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Then a weight value is calculated for each of these samples using

wi =
pnew (m = Mi|d)

pold (m = Mi|d)
. (F.28)

Using these weights, the normalised importance sampling method (Bishop, 2006,

p.533), gives the importance sampling estimator of µP as

µ̂PIS
=

1∑N
i=1wi

N∑
i=1

wiMi (F.29)

where the IS subscript denotes the importance sampling estimate. Although the

mathematical procedure of importance sampling (equations F.27 to F.29) is similar

to the equivalent prior replacement operation (equations F.10 to F.14) there is a clear

difference: prior replacement acts only upon the estimated mean of the old posterior

to obtain the new posterior mean, whereas importance sampling acts (by applying

a weighting factor) to each sample and then uses this to obtain the new posterior

mean estimate. More succinctly, importance sampling transforms individual samples

for later use in estimation whereas prior replacement acts to transform distributions

directly.

In Figure F.3(a) and (b) we demonstrate the empirical affect of this difference

between the two methods. To do this we reproduce the results obtained for the

variance and bias of the prior replacement (indirect) estimate of µP given in Figure

F.1(e) and (f) for varying values of µL. We compare these to the equivalent variance

and bias of the µ̂PIS
estimate acquired using importance sampling using the old

posterior, pold (m|d) = φ (m;µL,ΣL), as the instrumental distribution.

There are significant differences between the variance and bias when using prior

replacement and importance sampling. In general, prior replacement yields lower bias

and variance. However, the overall behaviour of the bias and variance with respect to

the change in µL is similar (i.e., the shape of the curves is similar). This suggests that

we can use the same intuitive interpretation of importance sampling to understand

prior replacement in terms of the importance of certain sample values in determining

the required estimate, the only difference being in the way that these samples are used

to obtain the final estimate. It should be noted that although this comparison has

been made only for estimates of µP , similar results exist for the ΣP estimators. We

have omitted these for the sake of brevity since the derivation of importance sampling
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for the variance estimator is not as easily exposited as that for the mean. Also we

have not investigated comparison to other possible implementations of importance

sampling such as the non-normalised importance sampling scheme (Bishop, 2006,

p.533).

F.6 Summary

We have derived approximations for the variance and bias of estimators using prior

replacement (termed indirect estimation) and compared these to sampling directly

from the corresponding posterior distribution (termed direct estimation) for Gaus-

sian prior and likelihood. Indirect estimation can outperform direct estimation when

prior and likelihood have sufficiently similar means, or when the likelihood has a suf-

ficiently large variance compared to the prior variance. Similar results were observed

for the expected Kullback-Leibler divergence in each case. These results not only

support our proposed use of prior replacement as a useful method for enhancing MDN

training, but also highlighted possible benefits of using prior replacement rather than

direct estimation in a variety of other situations where sampling is required to de-

termine a posterior distribution. A mathematical comparison of prior replacement

and the well-known Monte-Carlo technique of importance sampling was made. They

were shown to be quite distinct: the former is applied to distributions, the latter

to individual samples. However, empirical studies showed some similarities between

results obtained with both methods suggesting that they are indeed related.
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Appendix G

Bias and variance of the estimators

G.1 Preliminaries

The required quantities for the indirect estimators, µ̂PI
and Σ̂PI

, are the bias of

the mean, bias (µ̂PI
); the variance of the mean, var (µ̂PI

); the bias of the variance,

bias
(

Σ̂PI

)
; and the variance of the variance, var

(
Σ̂PI

)
. µ̂PI

and Σ̂PI
are functions

of the random variables µ̂L and Σ̂L (see equation F.14). Thus, in order to estimate

the required quantities we will need to be able to approximate the expectation of a

function of these random variables. Generally, if we have a function of two random

variables, f
(

Σ̂L, µ̂L

)
, then we can obtain an estimate of the expected value of that

function, E
[
f
(

Σ̂L, µ̂L

)]
, by using a Taylor expansion expanded around the expected

value of those variables, θ =
[
E
[
Σ̂L

]
,E [µ̂L]

]
. The third order Taylor expansion

approximation of E
[
f
(

Σ̂L, µ̂L

)]
is given by Van der Vaart (2000) as

E
[
f
(

Σ̂L, µ̂L

)]
≈f (θ) +

1

2

d2f (θ)

dΣ̂2
L

var
(

Σ̂L

)
+

1

2

d2f (θ)

dµ̂2
L

var (µ̂L)

+
d2f (θ)

dΣ̂Ldµ̂L
covar

(
Σ̂L, µ̂L

)
. (G.1)

Since µ̂L and Σ̂L are estimators for a Gaussian distribution (equation F.9) we have

the elementary results

E
[
Σ̂L

]
= ΣL, (G.2)

E [µ̂L] = µL, (G.3)
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var
(

Σ̂L

)
=

2Σ2
L

N − 1
, and (G.4)

var (µ̂L) =
ΣL

N
, (G.5)

where N is the number of samples made from the old posterior. The sample mean

and sample variance are independent (Riley et al., 2006, p.1230), consequently

covar
(

Σ̂L, µ̂L

)
= 0 (G.6)

and we may disregard this term henceforth in the Taylor expansion.

G.2 Bias of the indirect mean

The indirect mean estimator is a function of two random variables which we write

as

µ̂PI
=
(

Σ−1
B + Σ̂−1

L

)−1 (
Σ−1
B µB + Σ̂−1

L µ̂L

)
= f

(
Σ̂L, µ̂L

)
. (G.7)

We need to estimate its expected value using the Taylor expansion such that we can

estimate the bias. To do this we must first determine the derivatives. The first order

derivatives of this function, f , are

df

dΣ̂L

= Σ̂−2
L

(
Σ−1
B + Σ̂−1

L

)−2 (
Σ−1
B µB + Σ̂−1

L µ̂L

)
− Σ̂−2

L µL

(
Σ−1
B + Σ̂−1

L

)−1

, (G.8)

and
df

dµ̂L
=
(

Σ−1
B + Σ̂−1

L

)−1

Σ̂−1
L . (G.9)

Thus the required second order derivatives are

d2f

dΣ̂2
L

=− 2Σ̂−3
L

(
Σ−1
B + Σ̂−1

L

)−2 (
Σ−1
B µB + Σ̂−1

L µ̂L

)
+ 2Σ̂−4

L

(
Σ−1
B + Σ̂−1

L

)−3 (
Σ−1
B µB + Σ̂−1

L µ̂L

)
+ 2Σ̂−3

L µ̂L

(
Σ−1
B + Σ̂−1

L

)−1

− Σ̂−4
L µ̂L

(
Σ−1
B + Σ̂−1

L

)−2

(G.10)

and
d2f

dµ̂2
L

= 0. (G.11)
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Substituting the mean vector, θ =
[
E
[
Σ̂L

]
,E [µ̂L]

]
= [ΣL, µL], and G.11 into G.1

we obtain

E [µ̂PI
] = E

[
f
(

Σ̂L, µ̂L

)]
≈ f (ΣL, µL) +

1

2

d2f (ΣL, µL)

dΣ̂2
L

var
(

Σ̂L

)
. (G.12)

Then substituting G.10 into this we obtain

E [µ̂PI
] ≈
(
Σ−1
B + Σ−1

L

)−1 (
Σ−1
B µB + Σ−1

L µL
)

+
2Σ2

L

N − 1

(
− Σ−3

L

(
Σ−1
B + Σ−1

L

)−2 (
Σ−1
B µB + Σ−1

L µL
)

+ Σ−4
L

(
Σ−1
B + Σ−1

L

)−3 (
Σ−1
B µB + Σ−1

L µL
)

+ Σ−3
L µL

(
Σ−1
B + Σ−1

L

)−1 − Σ−4
L µL

(
Σ−1
B + Σ−1

L

)−2
)
. (G.13)

Noting that the posterior mean may be written

µP = f (ΣL, µL) =
(
Σ−1
B + Σ−1

L

)−1 (
Σ−1
B µB + Σ−1

L µL
)
, (G.14)

and the posterior variance as

ΣP =
(
Σ−1
B + Σ−1

L

)−1
(G.15)

we may then write the expected mean as

E [µ̂PI
] ≈ µP +

1

N − 1

(
−Σ−1

L ΣPµP + Σ−2
L Σ2

PµP + Σ−1
L ΣPµL − Σ−2

L µLΣ2
P

)
= µP +

1

N − 1
(µL − µP )

(
Σ−1
L ΣP − Σ−2

L Σ2
P

)
. (G.16)

Therefore the bias may be approximated, using its definition, as

bias (µ̂PI
) = E [µ̂PI

]− µP

≈ 1

N − 1
(µL − µP )

(
Σ−1
L ΣP − Σ−2

L Σ2
P

)
. (G.17)

224



Appendix G.5 BAYESIAN INVERSION OF SEISMIC DATA

G.3 Variance of the indirect mean

When calculating the variance we wish to obtain the expected value of the squared

difference between the sample mean and expected sample mean. We may write this

‘residual’ function g as

g
(

Σ̂L, µ̂L

)
= (µ̂PI

− E [µ̂PI
])2 =

(
f
(

Σ̂L, µ̂L

)
− E [µ̂PI

]
)2

. (G.18)

The expected value of this function is the variance, that is

var (µ̂PI
) = E

[
g
(

Σ̂L, µ̂L

)]
. (G.19)

We can use a Taylor expansion to approximate this variance. After calculating

derivatives and then following a similar procedure to that in section G.2, we find an

approximation for the variance of the mean estimate as

var (µ̂PI
) ≈ (µP − µL)2 2Σ2

PΣ−2
L

N − 1
+

Σ2
PΣ−1

L

N
. (G.20)

G.4 The bias of the indirect variance

We can use a similar analysis to that in section G.2 to calculate an approximation

for the bias of the variance. We begin with the function which gives the indirect

posterior variance estimator,

Σ̂PI
=
(

ΣB
−1 + Σ̂−1

L

)−1

= h
(

Σ̂L

)
. (G.21)

Again, we need to estimate its expected value using the Taylor expansion such that

we can estimate the bias. After doing this we find an approximation for the bias of

the indirect variance as

bias
(

Σ̂PI

)
≈ ΣP − E

[
Σ̂PI

]
=

2

N − 1

(
Σ−2
L Σ3

P − Σ−1
L Σ2

P

)
. (G.22)

G.5 Variance of the indirect variance

When calculating the variance we wish to obtain the expected value of the squared

difference between sample variance and expected sample variance. We may write
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this ‘residual’ function as

r
(

Σ̂L

)
=
(

Σ̂PI
− E

[
Σ̂PI

])2

=
(
h
(

Σ̂L

)
− E

[
Σ̂PI

])2

. (G.23)

As previously we obtain the variance by taking the expectation

var
(

Σ̂PI

)
= E

[
r
(

Σ̂L

)]
(G.24)

which can be approximated using the Taylor expansion, thus we need to calculate

the derivatives of r. After doing this, in a similar manner to that in section G.2, we

find an approximation of the variance of the indirect sample variance of the posterior

as

var
(

Σ̂PI

)
≈ 2Σ−2

L Σ4
P

N − 1
. (G.25)
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Lists of symbols

H.1 List of symbols in Chapter 2

alj neural network (NN) node variable in layer l

al vector containing all node variables in layer l of NN

b index to traces of synthetic data

B number of traces of synthetic data generated

d AVA-type data for 1-D grid/trace

drx real AVA-type data down a trace at lateral position x in Laggan

dataset

dsb synthetic AVA-type data trace generated from esb for Laggan dataset

e0 mean vector (or initial model) for low-fidelity Gaussian prior

EN sum-of-squares error for NN training/validation dataset

η learning rate parameter for back-propagation

E[ ] expectation operator

e true elastic parameters down 1-D grid/trace

ê elastic parameter (deterministic) estimates down 1-D grid/trace

erx true (real) elastic parameters down a trace at lateral position x in

Laggan dataset

êrx real deterministic elastic parameter estimates data down a trace at

lateral position x in Laggan dataset

esb the bth trace of synthetic elastic parameters sampled from pH(e) for

Laggan dataset
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êsb synthetic deterministic elastic parameter estimates obtained by invert-

ing dsb for Laggan dataset

g(x) sigmoidal activation function in NN

i general index (no fixed definition)

j general index (no fixed definition)

k general index (no fixed definition)

K l number of nodes in layer l (not including the bias node) of NN

L number of layers in NN (not including input layer)

λ approximation length for q

N number of training instances in NN training dataset

φ masking noise percentage for pre-training

pH(e) high-fidelity prior distribution

pL(e) low-fidelity prior distribution

q NN function

Q Operation which extracts [us,vs] pairs from [ês, es]

R reflectivity vector
r superscript, denotes quantities derived from real data
s superscript, denotes quantities derived from synthetic data

S wavelet block matrix specifying [wnear,wmid,wfar]

Σd covariance matrix for AVA-type data

Σe covariance matrix for low-fidelity Gaussian prior

u input vector for q

v vector defining output of q (i.e., E[v])

wlij NN weight in layer l

W matrix containing all NN weights

x used to denote lateral position [x, y] in Laggan dataset

z vertical coordinate of cell
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H.2 List of symbols in Chapter 3

αj weight of jth kernel in Gaussian mixture model (GMM)

ei elastic parameter vector in cell i, where ei = [IP , IS]i

i index to cell in grid

j index to kernel in GMM

k normalising constant

K number of kernels in GMM

M total number of cells in 2-D model grid

mi continuous geological parameters in cell i

m1 clay content by volume parameter used in example application

m2 sandstone matrix porosity parameter used in example application

µj mean of jth kernel in GMM

p(ei|mi) cell-wise geological likelihood (for mi)

pnew refers to distribution (prior or posterior) for ‘new’ situation

pold refers to distribution (prior or posterior) for ‘old’ situation

φ(µ,Σ) multivariate Gaussian distribution with mean µ and covariance Σ

q total number of times the prior changes (equal to M in the 2-D reser-

voir grid example)

Σj covariance matrix of jth kernel in GMM
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H.3 List of symbols in Chapter 4

a approximation length parameter

α probability of transition in Metropolis-Hastings (MH) algorithm

b proposed approximation length parameter in 3-D

C number of cliques on the grid

e set of all ei in the grid e = [e1, e2, ..., eM ]

ei elastic parameter vector in cell i, where ei = [IP , IS]i

fj(gΛj
) function over a clique

gi the discrete geological parameter in cell i

g′ candidate sample in MH algorithm

G ′ proposed reduced sample size for g

G sample space of gi

g set of all gi in the grid g = [g1, g2, ..., gM ]

GM sample space of g

H the set of all indices in the grid H = [1, 2, ...,M ]

i index to cell in grid (used in recursive algorithm)

j index used in recursive algorithm

k maximum index (number) in Ne(i)

l(z) operator used to select a set of rows around z to form a sub-grid

Λ a clique (set)

M the total number of indices in the grid

n number of samples made in MH algorithm

Ne(i) neighbourhood of cell i

q proposal distribution in MH algorithm

S length (cells) of a square neighbourhood’s sides

t iteration of Gibbs sampling algorithm

U [L] Uniform distribution, non-zero only over L
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H.4 List of symbols in Chapter 5

α magnitude of perturbation to an element of T

α1 the α parameter used in the first stage of the algorithm

α2 the α parameter used in the second stage of the algorithm

β probability that an element of T will be perturbed

β1 the β parameter used in the first stage of the algorithm

β2 the β parameter used in the second stage of the algorithm

C the set of all possible configurations of Ne(i)

|C| number of possible configurations of Ne(i), and hence statistics (prob-

abilities) in T

gi the discrete geological parameter in cell i

g set of all gi in the grid g = [g1, g2, ..., gM ]

gj the jth realisation of g (in R) simulated using Tj

gbest realisation made using ideal statistics vector

grank=1 the number 1 ranked realisation in R
gtarget the target pore-space realisation displayed to the expert

i index of a cell (geological parameter) in the grid

j index to members of population, j ∈ [1, ..., P ]

k index used to reference statistics in T

l iteration number of elicitation algorithm

M the total number of indices in the grid

Ne(i) neighbourhood of cell i

P the number of individuals in a population

P ∗ number of population members to be ranked

R set of P realisations corresponding to S
S population (set) of P T vectors

tk the kth statistic in the statistics vector in T

T statistics vector T = {tk | k ∈ {1, 2, ..., L}}
Tj the jth T vector in S
Tbest ideal statistics vector

Trank=1 the T vector corresponding to grank=1

Ttarget the T vector used to generate gtarget

U [L] Uniform distribution, non-zero only over L
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