29 research outputs found

    Charge on the quantum dot in the presence of tunneling current

    Full text link
    The calculation of the charge present in central region of the double barrier structure at non-equilibrium conditions is discussed. We propose here a simple method to calculate non equilibrium Green's functions which allows consistent calculations of retarded and distribution functions. To illustrate the approach we calculate the charge on the quantum dot coupled {\it via} tunnel barriers to two external leads having different chemical potentials μL\mu_L and μR\mu_R. The obtained results have been compared with other approaches existing in the literature. They all agree in the equilibrium situation and the departures grow with increasing the difference μL−μR\mu_L-\mu_R.Comment: 9 pages, 2 (.eps) figures, to be published in Solid State Commu

    Non-equilibrium Kondo effect in asymmetrically coupled quantum dot

    Full text link
    The quantum dot asymmetrically coupled to the external leads has been analysed theoretically by means of the equation of motion (EOM) technique and the non-crossing approximation (NCA). The system has been described by the single impurity Anderson model. To calculate the conductance across the device the non-equilibrium Green's function technique has been used. The obtained results show the importance of the asymmetry of the coupling for the appearance of the Kondo peak at nonzero voltages and qualitatively explain recent experiments.Comment: 7 pages, 6 figures, Physical Review B (accepted for publication

    Electron transport through strongly interacting quantum dot coupled to normal metal and superconductor

    Full text link
    We study the electron transport through the quantum dot coupled to the normal metal and BCS-like superconductor (N - QD - S) in the presence of the Kondo effect and Andreev scattering. The system is described by the single impurity Anderson model in the limit of strong on-dot interaction. We use recently proposed equation of motion technique for Keldysh nonequilibrium Green's function together with the modified slave boson approach to study the electron transport. We derive formula for the current which contains various tunneling processes and apply it to study the transport through the system. We find that the Andreev conductance is strongly suppressed and there is no zero-bias (Kondo) anomaly in the differential conductance. We discuss effects of the particle-hole asymmetry in the electrodes as well as the asymmetry in the couplings.Comment: Supercond. Sci. Technol. - accepted for publicatio
    corecore