289 research outputs found

    Prehistoric Human Ecodynamics in the Rub Al-Khali Desert: Results of Remote Sensing and Excavations in Dubai, United Arab Emirates

    Get PDF
    Archaeological investigations in the Emirate of Dubai, UAE conducted by the Dubai Department of Archaeology and the University of Arkansas demonstrate that the desert inland of the Oman Peninsula was occupied not only during the Arabian Neolithic (8000-4400 BC), when the region experienced a moist period referred to as the Holocene Climatic Optimum (HCO), but also during the more arid millennia following the decline of the HCO into the Christian Era. During this period, desert settlement clustered near a band of oases, in contrast to the more widespread spatial distribution of remains of nomadic pastoralists from the Neolithic. Excavations at al- Ashoosh and Saruq al-Hadid, two sites at the southern end of the Emirate of Dubai, coupled with analysis of dune accumulation at Saruq al-Hadid through ground-penetrating radar, and a regional analysis of groundwater availability based on satellite imagery, reveal the varied landscapes that made desert settlement possible and provide a chronology of inland settlement and landscape transformation for a time and place that was not well documented before this study. Evidence presented in this dissertation suggests that these inland oases were dynamic environments that influenced patterns of desert settlement and land use, and in turn were shaped by the varied activities of prehistoric people. Periodic occupation at both sites began with seasonal encampments during a third millennium pluvial and resumed during arid phases in the second and first millennia. Late occupation was likely supported by shallow groundwater that was fed by orographic rainfall in the Oman Mountains, rather than by precipitation on the desert plain. Occupation during the first millennium BC was distinct from earlier periods in that is showed clear integration into a regional political and economic network, first in its incarnation as a cultic site in the Iron Age II period (900-600BC), and following that as a center for metal working at the end of the first millennium. A hiatus in settlement at Saruq al-Hadid following the Iron Age II period and roughly coincident with the Iron Age III (600-300 BC) is marked by significant dune accumulation. The question remains whether this period of active sediment redeposition was a local or regional phenomenon, but the case is made here that it was a regional change triggered by the destabilization of sand dunes as natural vegetative cover was removed by growing herds of grazing animals and an expansion of agriculture in the Iron Age II period. These findings fill gaps in the histories of climate and settlement of southeast Arabia and more broadly, help to move us closer to understanding the complex exchanges between changes in climate, landscapes, and human activities in arid regions through time and worldwide

    Recent trends and long-standing problems in archaeological remote sensing

    Get PDF
    The variety and sophistication of data sources, sensors, and platforms employed in archaeological remote sensing have increased significantly over the past decade. Projects incorporating data from UAV surveys, regional and research-driven lidar surveys, the uptake of hyperspectral imaging, the launch of high-temporal revisit satellites, the advent of multi-sensor rigs for geophysical survey, and increased use of structure from motion mean that more archaeologists are engaging with remote sensing than ever. These technological advances continue to drive research in the specialist community and provide reasons for optimism about future applications, but many social and technical obstacles to the integration of remote sensing into archaeological research and heritage management remain. This article addresses the challenges of contemporary archaeological remote sensing by briefly reviewing trends and then focusing on providing a critical overview of the main structural problems. The discussion here concentrates on topics that have dominated the discourse in recent archaeological literature and featured prominently in ongoing fieldwork for the past decade across three broad segments of landscape archaeology: data collection in the field, the current state of data access and archives, and processing and interpretation

    Spontaneous Emergence of Spatio-Temporal Order in Class 4 Automata

    Full text link
    We report surprisingly regular behaviors observed for a class 4 cellular automaton, the totalistic rule 20: starting from disordered initial configurations the automaton produces patterns which are periodic not only in time but also in space. This is the first evidence that different types of spatio-temporal order can emerge under specific conditions out of disorder in the same discrete rule based algorithm.Comment: 5 pages, 6 color figures, Proceedings Medyfinol 2004, Physica A in prin

    Coherence in scale-free networks of chaotic maps

    Get PDF
    We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both dynamical and topological parameters. Three different network topologies are considered: (i) random scale-free topology, (ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian network. For the random scale-free topology we find a coupling strength threshold beyond which full synchronization is attained. This threshold scales as kμk^{-\mu}, where kk is the outgoing connectivity and μ\mu depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling strength is proportional to the neighbor connectivity. We show that the transition to coherence is of first-order and study the role of the most connected nodes in the collective dynamics of oscillators in scale-free networks.Comment: 9 pages, 8 figure

    Accurate Evolution of Orbiting Binary Black Holes

    Full text link
    We present a detailed analysis of binary black hole evolutions in the last orbit, and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Bruegmann (Phys. Rev. Lett. 92, 211101). For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM59 M_{ADM}.Comment: 4 pages, 3 figure

    Essentialist Reasoning and Knowledge Effects on Biological Reasoning in Young Children

    Get PDF
    Biological kinds undergo a variety of changes during their life span, and these changes vary in degree by organism. Understanding that an organism, such as a caterpillar, maintains category identity over its life span despite dramatic changes is a key concept in biological reasoning. At present, we know little about the developmental trajectory of children’s understanding of dramatic life-cycle changes and how this might relate to their understanding of evolution. We suggest that this understanding is a key precursor to later understanding of evolutionary change. Two studies examined the impact of age and knowledge on children’s biological reasoning about living kinds that undergo a range of natural life-span changes—from subtle to dramatic. The participants, who were 3, 4, and 7 years old, were shown paired pictures of juvenile and adult animals and asked to endorse biological or nonbiological causal mechanisms to account for life-span change. Additionally, reasoning of 3- and 4-year-old participants was compared before and after exposure to caterpillars transforming into butterflies. The results are framed in terms of a developmental trajectory in essentialist reasoning, a cognitive bias that has been associated with difficulties in understanding and accepting evolution

    Quantum utility -- definition and assessment of a practical quantum advantage

    Full text link
    Several benchmarks have been proposed to holistically measure quantum computing performance. While some have focused on the end user's perspective (e.g., in application-oriented benchmarks), the real industrial value taking into account the physical footprint of the quantum processor are not discussed. Different use-cases come with different requirements for size, weight, power consumption, or data privacy while demanding to surpass certain thresholds of fidelity, speed, problem size, or precision. This paper aims to incorporate these characteristics into a concept coined quantum utility, which demonstrates the effectiveness and practicality of quantum computers for various applications where quantum advantage -- defined as either being faster, more accurate, or demanding less energy -- is achieved over a classical machine of similar size, weight, and cost. To successively pursue quantum utility, a level-based classification scheme -- constituted as application readiness levels (ARLs) -- as well as extended classification labels are introduced. These are demonstratively applied to different quantum applications from the fields of quantum chemistry, quantum simulation, quantum machine learning, and data analysis followed by a brief discussion

    Shorter versus longer corticosteroid duration and recurrent immune checkpoint inhibitor-associated AKI

    Get PDF
    ImmunotherapyInmunoterapiaImmunoteràpiaBackground Corticosteroids are the mainstay of treatment for immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI), but the optimal duration of therapy has not been established. Prolonged use of corticosteroids can cause numerous adverse effects and may decrease progression-free survival among patients treated with ICPis. We sought to determine whether a shorter duration of corticosteroids was equally efficacious and safe as compared with a longer duration. Methods We used data from an international multicenter cohort study of patients diagnosed with ICPi-AKI from 29 centers across nine countries. We examined whether a shorter duration of corticosteroids (28 days or less) was associated with a higher rate of recurrent ICPi-AKI or death within 30 days following completion of corticosteroid treatment as compared with a longer duration (29–84 days). Results Of 165 patients treated with corticosteroids, 56 (34%) received a shorter duration of treatment and 109 (66%) received a longer duration. Patients in the shorter versus longer duration groups were similar with respect to baseline and ICPi-AKI characteristics. Five of 56 patients (8.9%) in the shorter duration group and 12 of 109 (11%) in the longer duration group developed recurrent ICPi-AKI or died (p=0.90). Nadir serum creatinine in the first 14, 28, and 90 days following completion of corticosteroid treatment was similar between groups (p=0.40, p=0.56, and p=0.89, respectively). Conclusion A shorter duration of corticosteroids (28 days or less) may be safe for patients with ICPi-AKI. However, the findings may be susceptible to unmeasured confounding and further research from randomized clinical trials is needed
    corecore