31 research outputs found

    Exact asymptotic form of the exchange interactions between shallow centers in doped semiconductors

    Full text link
    The method developed in [L. P. Gor'kov and L. P. Pitaevskii, Sov. Phys. Dokl. 8, 788 (1964); C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964)] to calculate the asymptotic form of exchange interactions between hydrogen atoms in the ground state is extended to excited states. The approach is then applied to shallow centers in semiconductors. The problem of the asymptotic dependence of the exchange interactions in semiconductors is complicated by the multiple degeneracy of the ground state of an impurity (donor or acceptor) center in valley or band indices, crystalline anisotropy and strong spin-orbital interactions, especially for acceptor centers in III-V and II-VI groups semiconductors. Properties of two coupled centers in the dilute limit can be accessed experimentally, and the knowledge of the exact asymptotic expressions, in addition to being of fundamental interest, must be very helpful for numerical calculations and for interpolation of exchange forces in the case of intermediate concentrations. Our main conclusion concerns the sign of the magnetic interaction -- the ground state of a pair is always non-magnetic. Behavior of the exchange interactions in applied magnetic fields is also discussed

    Associations between PM2.5 and risk of preterm birth among liveborn infants

    Get PDF
    Purpose: Studies suggest exposure to ambient particulate matter less than 2.5 μg/m3 in aerodynamic diameter (PM2.5) may be associated with preterm birth (PTB), but few have evaluated how this is modified by ambient temperature. We investigated the relationship between PM2.5 exposure during pregnancy and PTB in infants without birth defects (1999–2006) and enrolled in the National Birth Defects Prevention Study and how it is modified by concurrent temperature. Methods: PTB was defined as spontaneous or iatrogenic delivery before 37 weeks. Exposure was assigned using inverse distance weighting with up to four monitors within 50 kilometers of maternal residence. To account for state-level variations, a Bayesian two-level hierarchal model was developed. Results: PTB was associated with PM2.5 during the third and fourth months of pregnancy (range: (odds ratio (95% confidence interval) = 1.00 (0.35, 2.15) to 1.49 (0.82, 2.68) and 1.31 (0.56, 2.91) to 1.62 (0.7, 3.32), respectively); no week of exposure conveyed greater risk. Temperature may modify this relationship; higher local average temperatures during pregnancy yielded stronger positive relationships between PM2.5 and PTB compared to nonstratified results. Conclusions: Results add to literature on associations between PM2.5 and PTB, underscoring the importance of considering co-exposures when estimating effects of PM2.5 exposure during pregnancy

    Symmetry of anisotropic exchange interactions in semiconductor nanostructures

    Full text link
    The symmetry of exchange interaction of charge carriers in semiconductor nanostructures (quantum wells and quantum dots) is analysed. It is shown that the exchange Hamiltonian of two particles belonging to the same energy band can be universally expressed via pseudospin operators of the particles. The relative strength of the anisotropic exchange interaction is shown to be independent of the binding energy and the isotropic exchange constant

    SARS-CoV-2 variants of interest and concern naming scheme conducive for global discourse

    Get PDF
    A group convened and led by the Virus Evolution Working Group of the World Health Organization reports on its deliberations and announces a naming scheme that will enable clear communication about SARS-CoV-2 variants of interest and concern.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    Composites for automotive body panels

    Full text link
    Abstract not available
    corecore