372 research outputs found

    Encoder-Decoder Approach to Predict Airport Operational Runway Configuration A case study for Amsterdam Schiphol airport

    Get PDF
    The runway configuration of an airport is the com- bination of runways that are active for arrivals and departures at any time. The runway configuration has a major influence on the capacity of the airport, taxiing times, the occupation of parking stands and taxiways, as well as on the management of traffic in the airspace surrounding the airport. The runway configuration of a given airport may change several times during the day, depending on the weather, air traffic demand and noise abatement rules, among other factors. This paper proposes an encoder-decoder model that is able to predict the future runway configuration sequence of an airport several hours upfront. In contrast to typical rule-based approaches, the proposed model is generic enough to be applied to any airport, since it only requires the past runway configuration history and the forecast traffic demand and weather in the prediction horizon. The performance of the model is assessed for the Amsterdam Schiphol Airport using three years of traffic, weather and runway use data.Peer ReviewedPostprint (published version

    A Role of the Bile Salt Receptor FXR in Atherosclerosis

    Get PDF
    This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti-and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosi

    Entrepreneuring for Social Change: A Study on How Women Social Entrepreneurs Navigate Embedded Cultural, Social, and Economic Norms

    Get PDF
    Social entrepreneurship continues to expand as a profession and discipline of study, yet much remains unknown about how social entrepreneurs contextualize their experience. The existing narrative centers on the heroic (and often male) individual entrepreneur who changes the world with innovative ideas and sheer grit. Academic literature tends to echo this dominant narrative, primarily utilizing a positivist economic approach when analyzing entrepreneurship. This qualitative study examines how women social entrepreneurs navigate their embedded cultural, social, and economic norms when launching a social venture. My findings illustrate embedded norms include gender, market-based, rational-linear, and individualistic norms. Yet participants’ embedded norms exist in juxtaposition to professional norms of entrepreneurship, which promote dominant masculinities. Women social entrepreneurs navigate embedded norms by adopting a process of creative churn, moving between considering, imagining, meshing, spinning, and learning. Ultimately, women social entrepreneurs experienced barriers between embedded norms and professional norms of entrepreneurship, then utilized a process of creative churn to navigate this chasm, and ultimately adopted power of existing hegemonies when creating a social venture

    A framework for isogeometric-analysis-based design and optimization of wind turbine blades

    Get PDF
    Typical wind turbine blade design procedures employ reduced-order models almost exclusively for early-stage design; high-fidelity, finite-element-based procedures are reserved for later design stages because they entail complex workflows, large volumes of data, and significant computational expense. Yet, high-fidelity structural analyses often provide design-governing feedback such as buckling load factors. Mitigation of the issues of workflow complexity, data volume, and computational expense would allow designers to utilize high-fidelity structural analysis feedback earlier, more easily, and more often in the design process. Thus, this work presents a blade analysis framework which employs isogeometric analysis (IGA), a simulation method that overcomes many of the aforementioned drawbacks associated with traditional finite element analysis (FEA). IGA directly utilizes the mathematical models generated by computer-aided design (CAD) software, requires less user interaction and no conversion of CAD geometries to finite element meshes, and tends to have superior per-degree-of-freedom accuracy compared to traditional FEA. The presented framework employs the parametric capabilities of the Grasshopper algorithmic modeling interface developed for the CAD software Rhinoceros 3D. This Grasshopper-based framework enables seamless, iterative design and IGA of CAD-based geometries and is demonstrated through the optimization of both a pressurized tube and a simplified wind turbine blade design. Further, because engineering models, such as wind turbine blades, are typically composed of numerous surface patches, a novel patch coupling technique is presented. For the sake of straightforward implementation and flexibility, the coupling technique is based on a penalty energy approach. Formulations for the penalty parameters are proposed to eliminate the problem-dependent nature of the penalty method. This coupling methodology is successfully demonstrated using a number of multi-patch benchmark examples with both matching and non-matching interface discretizations. Together, these technologies enable practical and efficient design and analysis of wind turbine blade shell structures. The presented IGA approach is employed to perform vibration, buckling, and nonlinear deformation analysis of the NREL/SNL 5 MW wind turbine blade, validating the effectiveness of the proposed approach for realistic, composite wind turbine blade designs. Further, a blade design framework that combines reduced-order aeroelastic analysis with the presented IGA methodologies is outlined. Aeroelastic analysis is used to efficiently provide dynamic kinematic data for a wide range of wind load cases, while IGA is used to perform high-fidelity buckling analysis. Finally, the value and feasibility of incorporating high-fidelity IGA feedback into optimization is demonstrated through optimization of the NREL/SNL 5 MW wind turbine blade. Alternative structural designs that have improved blade mass and material cost characteristics are identified, and IGA-based buckling analysis is shown to provide design-governing constraint information

    Evaluation of graphical user interfaces for augmented reality based manual assembly support

    Get PDF
    Augmented reality (AR) technology is advancing rapidly and promises benefits to a wide variety of applications&mdashincluding manual assembly and maintenance tasks. This thesis addresses the design of user interfaces for AR applications, focusing specifically on information presentation interface elements for assembly tasks. A framework was developed and utilized to understand and classify these elements, as well as to evaluate numerous existing AR assembly interfaces from literature. Furthermore, a user study was conducted to investigate the strengths and weaknesses of concrete and abstract AR interface elements in an assembly scenario, as well as to compare AR assembly instructions against common paper-based assembly instructions. The results of this study supported, at least partially, the three hypotheses that concrete AR elements are more suitable to convey part manipulation information than abstract AR elements, that concrete AR and paper-based instructions lead to faster assembly times than abstract AR instructions alone, and that concrete AR instructions lead to greater increases in user confidence than paper-based instructions. The study failed to support the hypothesis that abstract AR elements are more suitable for part identification than concrete AR elements. Finally, the study results and hypothesis conclusions are used to suggest future work regarding interface element design for AR assembly applications

    Pauline Oliveros: A Shared Resonance

    Full text link
    Here we honour Pauline Oliveros with an account of the resonances that she left with us. We reflect on how she organised sound and life, based on our shared experiences meeting her as a composer, performer, mentor, teacher and friend. The reader will meet us both as β€˜I’, which we leave indistinguishable in order to follow and interweave the flow of our experience. Our resonance is also organised as if a Deep Listening score (in italics), with invitations to extend the experience through listening as meditation
    • …
    corecore