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Abstract—The runway configuration of an airport is the com-
bination of runways that are active for arrivals and departures
at any time. The runway configuration has a major influence
on the capacity of the airport, taxiing times, the occupation of
parking stands and taxiways, as well as on the management
of traffic in the airspace surrounding the airport. The runway
configuration of a given airport may change several times during
the day, depending on the weather, air traffic demand and noise
abatement rules, among other factors. This paper proposes an
encoder-decoder model that is able to predict the future runway
configuration sequence of an airport several hours upfront. In
contrast to typical rule-based approaches, the proposed model is
generic enough to be applied to any airport, since it only requires
the past runway configuration history and the forecast traffic
demand and weather in the prediction horizon. The performance
of the model is assessed for the Amsterdam Schiphol Airport
using three years of traffic, weather and runway use data.

Index Terms—runway configuration, machine learning

I. INTRODUCTION

Runways enable aircraft to take-off and landing. As such, at
major airports, the capacity of runways is the most restricting
element in considering total airport operations. Major airports
have several runways in order to accommodate a large amount
of aircraft movements. For instance, the Hartsfield-Jackson
Atlanta International Airport, which is the busiest airport in the
world with more than 107 million passengers in 2018 utilises 5
runways. The number of runways of an airport, however, does
not only depend on the volume of traffic. Runways may be
reserved for certain type of traffic, wind directions, visibility
conditions, time periods, or for noise abatement procedures.

It should be noted that not all runways of an airport are used
simultaneously. The planned combination of runways that are
active at any time is called the ”runway configuration”. For
airports with multiple runways the number of possible con-
figurations may be large. For instance, Amsterdam Schiphol
Airport (EHAM) has 6 runways, which could be combined in
more than 100 different ways. In practise, however, only 2 or
3 are used simultaneously. During daily time in summer, only
8 runway configurations are used 70% of the time in average1.

The runway configuration greatly influences the capacity of
the airport. In addition, the in and out taxi times and thus

1https://ext.eurocontrol.int/airport corner public/EHAM

the duration of the flights from off-block time to on-block,
also depend on the runways that are used to take-off and land
from/to the origin and destination airports, respectively. For
instance, aircraft using the 18R/36L runway of EHAM (see
Fig. 3), located to reduce the noise impact on the surrounding
communities, have a 20-minute taxi to/from the terminal,
while for other runways, the taxi-time is about 10 minutes.
The runway configuration also has a major impact on the
occupation of parking stands and taxiways, as well as on the
management of traffic in the airspace surrounding the airport.

At present, the selection of runway configuration is mainly
based on human experience. Air Traffic Controllers (ATCOs)
examine several factors to determine the best sequence of run-
way configurations to be used in the next hours. For instance, it
is well known that wind speed and wind direction influence the
choice of the runway configuration since cross-winds (relative
to the direction of that runway) exceeding a threshold may
not be adequate to take-off and landing. Moreover, certain
runways may be prohibited under poor visibility conditions
due to unqualified instrumentation. In addition to winds and
visibility, a runway may be also not operable due to highly
intense precipitation or icing conditions. Last but not least,
extremely hot temperatures can make take-off impossible for
certain aircraft because of insufficient lift force. The scheduled
number of arrivals and departures for the next hours as well as
the aircraft wake categories are also expected to have a great
impact when deciding which runways to use at a given time.

Unfortunately, it is difficult to represent the criteria con-
sidered by the ATCOs to determine the runway configuration
given the influencing factors with generic rule-based models,
and thus it is difficult to accurately predict the future runway
configuration (and all the variables that depend on it). More-
over, each airport may implement different rules, meaning that
creating a generic rule-based model might be unfeasible. For
instance, at EHAM, weather is the main factor considered by
ATCOs when selecting the configuration1. The environmental
(in particular noise) rules for the use of runways, however,
also play a role in determining the runway configuration.

Several works have attempted to predict the future runway
configuration. For instance, reference [1] proposed a discrete-
choice model of the configuration selection process from em-
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pirical data. Results showed that, if the actual traffic demand
and weather conditions where known 3 hours in advance, the
model could predict the runway configuration at La Guardia
and San Francisco airports with an accuracy of 82% and 85%,
respectively. More recently, Ref. [2] proposed an Artificial
Neural Network (ANN) architecture that uses similar data
to predict the runway configuration and the corresponding
capacity. Results for predictions one hour ahead showed a
promising predictive power. The dataset used to train and
evaluate the model, however, comprised only 24 hours.

This paper proposes an encoder-decoder model inspired by
sequence to sequence techniques to predict the runway con-
figuration sequence of an airport every 15 min in an horizon
of 6 hours. The model takes as inputs the observed weather
and traffic demand in the near past, as well as the weather
and traffic demand forecast in the 6-hours prediction horizon.
This information is combined with the recently used runway
configuration history to perform the sequence prediction. The
performance of the model is assessed for EHAM using three
years of traffic, weather and runway use data.

II. SEQUENCE TO SEQUENCE (SEQ2SEQ) MODELS

Note that throughout this paper, and as a general rule,
scalars and vectors are denoted either with lower or upper case
letters, e.g., a or A. Vectors are denoted with the conventional
overhead arrow, e.g., ~a; while sequences use the same font but
in bold, .e.g, a. Sets are denoted using calligraphic fonts, e.g.,
A; while matrices use the same font but in bold, e.g., A.

Seq2seq models lie behind numerous applications such
as neural machine translation, text summarisation, speech
recognition, video captioning, online chat-bots and other cases
where it is desirable to generate a sequence from another [4].

The goal of a seq2seq model is to find the output se-
quence y = (~y1, ~y2, . . . , ~yTy ) in <ny that maximizes the
conditional probability of y given the input sequence x =
(~x1, ~x2, . . . , ~xTx) in <nx , i.e., argmaxyp(y|x). Tx and Ty are
the length of the input and output sequences, respectively.

A. Basic encoder-decoder
Conventional seq2seq models used in many applications

consist of two parts: the encoder and the decoder. The role
of the encoder is to condense the information of the input
sequence x into a vector of a fixed length ~c, commonly known
as context. The context is used to condition the decoder, which
generates the output sequence y that maximises p(y|x). The
architecture of a basic encoder-decoder is shown in Fig. 1a.

The usual approach is to use a Recurrent Neural Network
(RNN) as encoder. Roughly speaking, a RNN has a looping
mechanism that allows important information to flow from
one time step to the next one. This information is stored in
the hidden state of the RNN, ~ht 2 <nh . At each time step t
the RNN takes the inputs vector and updates its hidden state:

~ht = Recurrent�h, h,nh

⇣
~ht�1, ~xt

⌘
, (1)

where Recurrent is a nonlinear function that depends on the
RNN type. In Eq. (1), �h and  h are the activation and

recurrent activation functions, respectively. For instance, for
a vanilla RNN the update is typically performed as [5]:

~ht = tanh
⇣
Whh

~ht�1 +Whx~xt +~bh
⌘
, (2)

where Whh 2 <nh⇥nh and Whx 2 <nh⇥nx are trainable
matrices and ~bh 2 <nh is the (also trainable) bias vector.
Note that at t = 1 the hidden state depends on the first inputs
vector ~x1 as well as the initial hidden state ~h0. The default
approach consists of initialising the hidden state with zeros
(i.e., ~h0 = ~0). This strategy often works well for seq2seq.

Vanilla RNNs, frequently have the problem of vanishing
gradients which, negatively influences the learning of long
sequences. To solve vanishing gradients a popular way is to
use LSTM (Long Short Term Memory) [6] or Gated Recurrent
Unit (GRU) [7].

Generally speaking, the context vector that conditions the
decoder to generate y could be any nonlinear function q of
the whole sequence of hidden states generated by the encoder:

~c = q (h) = q
⇣
~h1,~h2, . . . ,~hTx

⌘
. (3)

The most basic encoder-decoder model, however, simply
uses the last hidden state as context vector, i.e, ~c = ~hTx .

The decoder component is another RNN trained to predict
the next output ~yt given the context vector ~c and all the
previously predicted outputs ~y1, . . . , ~yt�1. In other words, the
decoder defines a probability over the sequence y by decom-
posing the joint probability into the ordered conditionals:

p (y|x) =
TyY

t=1

p (~yt|~y<t,~c) =

TyY

t=1

p (~yt|~y1, . . . , ~yt�1,~c) , (4)

where the context vector is an implicit function of x through
Eq. (3). The conditional probability of ~yt is computed as:

~pt = p(~yt|~y<t,~c) = Dense�d,ny (~st) , (5)

where a fully-connected dense layer of n units and activation
function � is defined as the operation that applied to any vector
of inputs ~x 2 <m generates the output ~y 2 <n according to:

~y = Dense�,n(~x) = �
⇣
W~x+~b

⌘
, (6)

where W 2 <n⇥m is a weighting matrix, and ~b 2 <n is the
bias vector. Both W and ~b are parameters to be trained.

In Eq. (5), ~st 2 <ns is the hidden state of the decoder’s
RNN, which can be computed similar to Eq. (1):

~st = Recurrent�s, s,ns(~st�1, ~yt�1) (7)

As for the encoder, in most practical applications the
decoder is a GRU or LSTM. In the basic encoder-decoder ar-
chitecture (see Fig.1a), the context vector is only used once to
initialize the hidden state of the decoder (i.e., ~s0 = ~c = ~hTx ).

The decoder behaves differently during training and infer-
ence (prediction of unseen data). During training, the ground

2
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Figure 1. Encoder-decoder architecture (inference case)

truth of the target variable is known and the input at each time
step is given as the actual output (and not the predicted output)
from the previous time step. During inference (as illustrated in
Fig. 1) the input at each time step is the predicted output from
the previous time step. According to Eq. (7), at the very first
time step of the prediction phase the hidden state is a function
of ~y0. Both in training and inference, at the very first time
step a start token is used as input to initialise the prediction.

B. Encoder-decoder with Luong’s global attention

A potential issue with the basic encoder-decoder illustrated
in Fig. 1a is that the encoder must compress all the necessary
information of the input sequence into a fixed-length vector.
When the sequences is very long, the performance of the basic
encoder-decoder architecture is critically compromised. In or-
der to solve this issue, advanced encoder-decoder architectures
create a different context vector ~ct for each time step of the
decoding phase, instead of building a single context vector
out of the last hidden state of the encoder. This architecture is
commonly known as encoder-decoder with attention [3], [8].

Attention mechanisms are classified into two broad cate-
gories: global and local. While global attention uses all the
encoder’ s hidden states to generate the context vector, local
attention uses only a subset of them. For typical Natural
Language Processing (NLP) problems, global attention has
the drawback of requiring to attend each element on the input
sequence for each decoding step, which is computationally
expensive and impractical when translating long sequences,
e.g., paragraphs or documents. Yet, the length of the input
sequences for the model presented in this paper are sufficiently
short to be attended by global attention. For this reason, in this
paper Luong’s global attention [3] has been implemented.

When implementing this attention mechanism, the context
vector ~ct 2 <nh at each decoding step is computed as a
weighted sum of the hidden states of the encoder:

~ct = ~↵t · h =
TxX

k=1

↵tk
~hk, (8)

where ~↵t = [↵t1,↵t2, . . . ,↵tTx ] is the alignment vector at t,
which length equals the number of time steps of the input
sequence, i.e., Tx. This alignment vector is computed as:

~↵t = Alignment(~st,h) =
exp(score(~st,h))PTx

k=1 exp(score(~st,~hk)))
. (9)

Several score functions were proposed in Ref. [3]. In
this paper, the general score function has been implemented
because it provided similar results to the concat score function
yet being simpler and requiring to train less parameters.

At each time step of the decoding phase, the hidden state
~st and the corresponding context vector ~ct are concatenated
to produce an attentive hidden state ~at 2 <na as follows:

~at = Densetanh,na (~ct||~st) , (10)

where the operand || refers to vector concatenation. Finally,
the attentive hidden state is then passed through a dense layer:

~pt = p(~yt|~y<t,~ct) = Dense�d,ny (~at) . (11)

The architecture presented so far can be used to solve multi-
class classification problems, where the output vector at each
time step ~yt has as many elements as possible classes, and
the value of each element is the probability of belonging to
the corresponding class. For the ground truth, 1 appears at the
element of the correct class, and 0 in all the others. Ideally,
when a given class is predicted by the decoder, the value of
the corresponding element should be close to 1, and the other
elements should be close to 0. The most convenient way to
accomplish that is to use the softmax activation function as
�d, which assigns a probability to each one of its inputs such

3
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that
P
~pt = 1. Accordingly, the probability associated to a

class is not independent from that of the others.
The encoder-decoder is typically trained to minimize the

cross-entropy (CE), calculated independently for each output
vector in the sequence and then summed up. For a given
training example composed by the input and output sequences:

CE(x,y) = �
TyX

t=1

~yt · log(~pt(x)), (12)

where ~yt is the ground truth and ~pt is the probability predicted
by the model given x. In binary classification, where the
number of classes is 2, each element in the output sequence
is a scalar, i.e., y = (y1, y2, . . . , yTy ) in <, which probability
is predicted by using sigmoid activation function as �d [5].

III. PROPOSED APPROACH

As mentioned in Section I, ATCOs select runway config-
uration based on many factors, including weather conditions,
traffic demand, and noise regulations, which might depend in
turn on the hour of the day, for instance. The aim of this
study is to assess the feasibility of a data-driven model trained
on historical data capable to predict the runway configuration
several hours ahead using some of these features as input.

The most straightforward way to accomplish that consists
of feeding a feed-forward neural network with the aforemen-
tioned features at a particular time and predict the instanta-
neous runway configuration. Most probably, ATCOs do not
only look these features at a given time to make a decision,
but also take into account their evolution on a prolonged time
interval (e.g., several hours). Therefore, the first hypothesis of
the model proposed herein is that a sequence of these features
is what drives ATCOs decisions. The second hypothesis is that
the probability of selecting a runway configuration at a given
time is conditioned on the previous decisions in the recent
past. Taking these two hypothesis into account, an attractive
model to capture information encoded in a sequence of inputs
and generate a sequence out of this is the encoder-decoder
with attention described in Section II.

The outputs and inputs of the model are presented in
Sections III-A and III-B, respectively. Then, the proposed
encoder-decoder architecture is described in Section III-C.

A. Outputs of the decoder
The target variable for the problem tackled in this paper can

be defined in different ways. The final choice will determine
the number and type of outputs that the decoder generates, as
well as the activation function of their last dense layer.

The most straightforward strategy consists of identifying all
possible combinations of runways, associate each one to a
given class, and solve a single-output multi-class classification
problem. Using this approach, the output of the decoder at
each time sample is, in point of fact, a class representing the
predicted runway configuration. As discussed in Section II-B,
the usual way to address multi-class classification problems is
to transform the target variable to a one-hot vector, meaning

that the output of the decoder is a vector with as many ele-
ments as classes (runway configurations), where each element
is the probability associated to that class. These probabilities
are generated by a softmax function as �d and sum up to 1.

In this paper, the problem is addressed as a multi-output
mutli-class classification, where each output corresponds to
a runway. The airport may have runways that are used only
for take-off, only landing, or that could be used for both.
For the set of runways that are always used for an unique
type of operation (Rb), the corresponding outputs are scalar
binary variables: active or inactive. For the set of runways
that could be used to accommodate departures and arrivals
(Rm), the corresponding outputs are categorical variables with
three possible classes: take-off, landing or inactive. The way of
handling each individual output for runways in Rm is identical
to that of the single-output multi-class described above. The
output corresponding to each runway in Rb is a scalar which
probability value is generated by a sigmoid activation function.

If compared to the single-output multi-class strategy, the
multi-output multi-class has the advantage that if only the state
of one runway (one output) is unsatisfactorily predicted, the
penalty to the loss function is lower than if the predictions for
all runways (i.e., runway configuration) are wrong.

The decoder generates the sequence of outputs, where each
output is the state of the corresponding runway (either a binary
scalar or a one-hot representation of a 3-class categorical
variable), for the following 6 hours in intervals of 15 minutes.
Therefore, in this model Ty = 24, and ny = |Rb|+ 3|Rm|.

B. Inputs of the encoders
The encoder-decoder model is composed by two encoders,

each one receiving a different sequence of input features.
The task of the first encoder is to capture factors influencing

the choice of runway configuration sequence related to the
weather and traffic demand in the near past and also in the
prediction horizon. The length of the sequence fed to this
encoder is Tx = 48, with each element in the sequence
including the features shown in Table I over a 15-minute
interval. Accordingly, this encoder receives information over
a 12-hour period. The first 24 elements correspond to the
observations in the past 6 hours, and the remaining 24 elements
include the forecast over the prediction horizon (next 6 hours).

The input vector fed to this encoder at each time step
includes weather features such as wind direction and speed,
temperature and visibility; demand features such as how many
departures of each aircraft category type are planned in the
corresponding 15-minute interval; and calendar features such
as the hour of the day. Note that some of these features are
continuous while others are categorical (discrete). In this study,
each categorical variable has been represented as a one-hot
vector, yet the use of embeddings is also encouraged.

The introduction of the second encoder is motivated by
the fact that the recently used configuration sequence might
also condition the decision of ATCOs. As such, the second
decoder takes the known runway configuration sequence used
in the past 6 hours, also discretised in intervals of 15 minutes.
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Figure 2. Architecture of the encoder-decoder (same color convention as Fig. 1 applies)

Accordingly, the length of the input sequence fed to the second
encoder is Tx = 24. Table II lists the features included in the
input vector of the second encoder at each time step.

TABLE I. INPUTS TO THE 1ST ENCODER EVERY 15 MINUTES.
AIRCRAFT CATEGORIES ARE HEAVY: H, MEDIUM: M, AND LIGHT: L.

Group Type Feature

Weather

Continuous

wind direction
wind speed
wind gust
temperature
dew point
ceiling
visibility
cloud height

Categorical

cloud cover
cloud type
precipitation
obscuration

Demand
Continuous

# of H departures in a 15/30/60 min interval
# of M departures in a 15/30/60 min interval
# of L departures in a 15/30/60 min interval
# of H arrivals in a 15/30/60 min interval
# of M arrivals in a 15/30/60 min interval
# of L arrivals in a 15/30/60 min interval

Calendar Categorical

Hour of the day
Day of the week
Week of the month
Month of the year

TABLE II. INPUTS TO THE 2ND ENCODER EVERY 15 MINUTES

Group Type Feature

Runway use Categorical (binary) runway r state 8r 2 Rb

Categorical (multi-class) runway r state 8r 2 Rm

C. Architecture of the encoder-decoder model
The architecture of the proposed encoder-decoder is il-

lustrated in Fig. 2. Both encoders are bi-directional RNNs
(BRRNs), which simply consists on putting two independent
RNNs together. The input sequence is fed in normal time order

for one RNN, and in reverse time order for the other. Then, the
outputs of the two RNNs are concatenated at each time step,
producing a vector in <2nh that receives information from
both past and future. The last hidden state of the forward and
backward RNNs of both encoders are also concatenated, and
passed through a dense layer which number of units must be
identical to the number of units in the decoder’s RNN (ns).
The output of this dense layer is used as initial hidden state of
the decoder. At the first time step of the prediction, the decoder
is fed with the current runway configuration and the hidden
state generated by the two encoders. Therefore, the token that
initialises the prediction is the current runway configuration.

The updated hidden state is fed to two independent attention
layers. Each attention layer computes a context vector that
hopefully captures the most important information from the
corresponding encoder. The two context vectors are concate-
nated with the hidden state of the decoder and passed through a
dense layer to generate the attentive hidden state (see Eq. (10)).

Remember that, in this model, the decoder generates as
many outputs as runways, where each output is either binary
or a 3-class categorical variable. For each output (runway),
the probabilities of the possible runway states are given by a
sigmoid or softmax activation function as �d, respectively.

The weights of the encoder-decoder model could be found
by minimising the sum of cross-entropy for each output:

L(x,y) =
X

r2Rb[Rm

CE(x,yr) (13)

where yr is the sequence of outputs for the runway r and CE
is the cross-entropy (see Eq. (12)).

This works well as long as the dataset is balanced. Dealing
with classification problems where the classes are not rep-
resented equally is a dangerous situation that could lead to
the well known accuracy paradox, in which the accuracy of
the model is supposed to be excellent, but in reality is only
reflecting the underlying class distribution. There are several
strategies to deal with unbalanced datasets.
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For instance, one could sample more minor class samples
or remove major class samples; or try to generate artificial
samples for the minor classes using Synthetic Minority Over-
sampling Technique (SMOTE). In this paper the solution
proposed in Ref. [9] has been implemented, which consists
of reshaping the loss function to down-weight easy examples
(i.e., those predicted with a very high probability) and focus
on difficult ones. The result is the Focal Loss (FL);

FL(x,y) = �
TyX

t=1

(1� ~pt(x))
� · ~yt · log(~pt(x)) (14)

where � is a fixed parameter that smoothly adjusts the rate at
which easy examples are down-weighted.

IV. SET UP OF THE EXPERIMENT

The performance of the model proposed in Section III-C
has been assessed for a realistic case study at EHAM using
three years of historical data. The dataset is described in Sec-
tion IV-A. Section IV-B shows the scenario of the experiment.

A. Data set
The data used for the assessment concerns the time period

from 1st of January 2016 to 1st of May 2019.
Air traffic demand data (number of arrivals and departures)

have been obtained from the Enhanced Tactical Flow Manage-
ment System (ETFMS), which monitors flight evolution data
received from the Network Manager and provides real-time
information to all operational stakeholders. The ETFMS data
provides the up-to-date status of the flight during its whole
life by including, for instance, the Expected Take-Off Time
(ETOT), the Actual Take-Off Time (ATOT), the Estimated
Time of Arrival (ETA) and the Actual Time of Arrival (ATA).

The aircraft type designators (heavy, medium or light) of
each flight scheduled to depart or arrive at the airport has
been obtained from the ICAO DOC 8643 specification.

Weather data have been extracted from Meteorological Ter-
minal Aviation Routine Weather Reports (METARs). METARs
are typically generated once an hour at the airports or at
weather observation stations. A standard METAR includes
information about the temperature, pressure, dew point, wind
direction and speed, precipitation, cloud cover and height, as
well as visibility and ceiling. A METAR may also include
information about the presence of specific weather phenomena
such as precipitation and obscuration type and intensity.

Finally, the EHAM’s runway configuration history has been
kindly provided by LVNL (Luchtverkeersleiding Nederland).

These data have been merged into a single dataset according
to time. Then, the dataset has been re-sampled in intervals of
15 minutes. The re-sampled dataset has been used to generate
sequences every hour, where each sequence includes data for
the past and next 6 hours in 15-minute intervals (48 samples).

It is important to remark that, similar to [1], in this ex-
periment actual traffic demand and weather data (i.e., post-
ops) have been used as input to the first encoder for the
whole 12-hour input sequence, instead of using the forecast.

Therefore, the results shown in this paper correspond to a best-
case scenario in which the demand and weather forecast in the
6-hours prediction horizon is known with high accuracy.

B. Scenario

Figure 3 illustrates the EHAM layout. During periods of
high demand, three runways are typically used simultaneously
(e.g., 18R for landing and 24/18L for take-off). In some
specific situations, ATCOs may decide to increase the number
of active runways to four. When the traffic demand is low,
two runways are typically in use (e.g., 18R for landing and
24 for take-off). In exceptional cases, only one runway may
be active, which is then used for both departures and arrivals.

Figure 3. Amsterdam Schiphol Airport (EHAM) layout

The number of different runway configurations observed for
the time period considered in this experiment was 142, from
which only 20 of them where used more than 1% of the time.
The sum of frequencies for these 20 runway configurations
was 87%. Given the limited amount of data, only time periods
in which one of these 20 runway configurations was active
were included in the dataset, and the remaining were excluded.

Table III shows the state frequency of each runway, after
removing the 13% of time periods in which rare runway
configurations were used. Note that each row sums up to 1.

V. RESULTS

Typical strategies to assess the performance of the model,
such as using randomised train-test splits and k-fold cross-
validation, are not appropriate for time series prediction be-
cause the model may be trained on data from future to predict
past. The prediction of the past knowing the future, like other
types of data leakage, overestimates the quality of the model.
Walk-forward evaluation is a well-known method to correctly
evaluate a model for time series prediction by respecting the
temporal order of the train-validation-test split [10].
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TABLE III. NORMALISED RUNWAY STATE FREQUENCY

RWY Frequency type
Inactive Landing Takeoff

06 0.721 0.279 -

binary

09 0.982 - 0.018
18L 0.755 - 0.245
18R 0.445 0.555 -
24 0.467 - 0.533
27 0.897 0.103 -
36L 0.609 - 0.391
36R 0.877 0.123 -

36C 0.848 0.066 0.086 multi-class18C 0.807 0.164 0.029

Initially, the model was trained with data from 1st January
2016 to 1st January 2019, but using the last 10% of the training
data for validation. After training, the model was used to
predict the runway configuration sequences for the 2nd January
2019. These predictions along with their corresponding ground
truth were stored for performance evaluation. Then, data for
the 2nd January 2019 was appended to the train set, the
validation set was updated to include the last 10% of the train
data, and the model was re-trained. This process was repeated
day after day until 1st May 2019. The model was evaluated
using the predictions from 2nd January 2019 to 1st May 2019.

Section V-A shows the hyperparameters of the model, which
were selected using the initial train-validation set. Section V-B
shows an example that illustrates a practical application of the
model. Finally, Section V-C shows the performance metrics of
the model as a result of the walk-forward evaluation.

A. Optimal hyperparameters
Given the relatively small amount of hyperparameters of the

model, the ones that better performed in the initial validation
set were selected using manually fine-tuning (see Table IV).
However, other techniques such as grid search, randomised
search or Tree Parzen Estimators (TPE) are also recommended.

TABLE IV. HYPERPARAMETERS OF THE MODEL

hyperparameter value

Attention score function general (see Ref. [3])
Type of RNN encoder / decoder LSTM / LSTM
Units of the encoder’s RNN (nh) 16
Units of the decoder’s RNN (ns) 32
Attention vector length (na) 32
batch size 64
learning rate 0.001
� (see Eq. 14) 2
Training epochs / early stopping patience 50 / 5

B. Illustrative example
Figures 4a and 4b show a 6-hours runway configuration

prediction and the corresponding ground truth, respectively.
According to Fig. 4, the proposed encoder-decoder model

was able to accurately predict that runway 18R would be used
for landing during the next 6 hours. The model also identified

(a) Prediction

(b) Ground truth

Figure 4. Example (light blue: Landing, dark blue: Take-off)

that runway 18C would be also active during a limited time
period, probably to accommodate a higher demand of arrivals.
Similarly, the model was able to accurately estimate the
switching times for the runways used for take-off. Fig. 4 shows
that, even if not being perfect, the state prediction for each
output (here a runway) closely followed the actual sequence.

Figure 5 shows the alignment matrix (A 2 <Ty⇥Tx ) of
the first encoder for this illustrative example. Each row of this
matrix corresponds to the alignment vector ~↵tq of a time step t
of the decoding phase. Roughly speaking, the first 24 columns
of this matrix are the weights associated to the observed
weather and traffic demand (condensed into the hidden state
of the encoder) in the past 6 hours, and the last 24 columns
those associated to the forecast weather and traffic demand
in the 6-hours prediction horizon. The higher the weight, the
more attention the decoder put on the corresponding hidden
state of the first decoder to perform the prediction. According
to Fig. 5, and as expected, the decoder gives more importance
to the weather and traffic demand in the prediction horizon
(last 24 columns). Furthermore, more attention is given to the
input features when close to time step for which the runway
state has to be predicted. In other words, weights are clustered
along the diagonal of the right 24⇥ 24 square of Fig. 5.

Figure 5. Attention weights
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C. Aggregated performance metrics

These performance of the model on unseen data have been
evaluated by comparing the predictions performed during the
walk-forward validation with their respective ground truth.
Table V shows the classical metrics used to assess the perfor-
mance of classification models: precision, recall and f1-score.
A detailed description of these metrics can be found in [5].

TABLE V. PERFORMANCE METRICS FOR DIFFERENT PREDICTION LOOK-
AHEAD TIME INTERVALS (IN HOURS)

RWY precision recall f1-score

(0,2] (2,4] (4,6] (0,2] (2,4] (4,6] (0,2] (2,4] (4,6]

06 0.98 0.96 0.96 0.98 0.97 0.97 0.98 0.97 0.96
09 0.99 0.99 0.99 1.0 1.0 1.0 0.99 1.0 0.99
18C 0.9 0.86 0.83 0.9 0.86 0.84 0.9 0.86 0.84
18L 0.86 0.82 0.82 0.91 0.9 0.88 0.89 0.86 0.85
18R 0.92 0.87 0.84 0.91 0.85 0.8 0.91 0.86 0.82
24 0.9 0.88 0.88 0.83 0.73 0.71 0.86 0.8 0.79
27 0.98 0.97 0.96 0.98 0.97 0.97 0.98 0.97 0.96
36C 0.95 0.94 0.94 0.96 0.94 0.94 0.96 0.94 0.94
36L 0.97 0.95 0.95 0.97 0.96 0.96 0.97 0.96 0.95
36R 0.99 0.98 0.98 0.98 0.97 0.97 0.98 0.98 0.97

According to Table V, the precision of the model is higher
than 0.86 for all runways when performing predictions up to
2 hours ahead. It should be noted that this metric basically
answers the question to: ”Of all runway states that the model
predicted as active, how many actually happened?”. Interest-
ingly, Table V also shows that the precision of the model
does not significantly degrade even if extending the prediction
horizon up to 6 hours. This surprisingly stable precision score
may be due to the assumption that a perfect weather and traffic
demand forecast was available in the whole prediction horizon.

Similar conclusions apply to the recall, which basically
answers the question to: ”Of all the runways that truly were
active, how many did the model identify?”. For all the run-
ways, the model is able to predict the state in the next 2 hours
with a high recall. The worst case is observed for the runway
24 which, as expected, corresponds to the output with more
balanced runway states (47% of the time was inactive and
53% used for take-off). The remaining runways show excellent
recall figures above 0.91. The recall also decreases as the
prediction look-ahead time increases. Yet, and as observed for
the precision score, its degradation is not significant.

Finally, f1-score is the weighted average (i.e., harmonic
mean) of precision and recall such that the lowest value is
highlighted. In other words, if the precision or the recall is
small, the other metric no longer matters. Using f1-score as a
metric, one can ensure that if its value is high, both precision
and recall of the model reveal model’s quality. According to
Table V, the f1-score is higher than 0.86 for all runways when
predicting their state 2 hours ahead. As for the recall, the worst
score correspond to the runway with the most balanced states
(runway 24). This metric also showed to be relatively constant
regardless of the look-ahead time of the prediction.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed an encoder-decoder model that is able
to accurately predict the runway configuration sequence of an
airport 6 hours ahead using only historical data.The model
was assessed for Amsterdam Schiphol airport using three
years of historical weather, traffic demand and runway use
data, showing excellent figures of classification performance
in the whole prediction horizon. This model could provide
more accurate capacity and taxi-times figures to all operational
stakeholders. Moreover, it could feed other models to predict,
for instance, the Standard Instrumental Departure (SID).

However, predictions were performed assuming accurate
forecast of weather and traffic demand in the prediction hori-
zon. Future work will evaluate the performance degradation
due to the use of realistic weather and traffic demand forecast.
It is also foreseen to investigate the performance of simplified
versions of the model, such as including only features in the
prediction horizon (i.e., remove the information about past
runway configurations, traffic demand and weather), and/or
to completely remove the second encoder from the model.
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