469 research outputs found
Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction
To evaluate the feasibility of detecting denervated myocardium in the infarcted canine heart, the distribution of sympathetic nerve endings using 1–123 metaiodobenzylguanidine (MIBG) was compared with the distribution of perfusion using thallium-201, with the aid of color-coded computer functional map in 16 dogs. Twelve dogs underwent myocardial infarction by injection of vinyl latex into the left anterior descending coronary artery (transmural myocardial infarction, n = 6), or ligation of the left anterior descending coronary artery (nontransmural myocardial infarction, n = 6). Four dogs served as sham-operated controls. Image patterns were compared with tissue norepinephrine content and with histofluorescence microscopic findings in biopsy specimens.Hearts with transmural infarction showed zones of absent MIBG and thallium, indicating scar. Adjacent and distal regions showed reduced MIBG but normal thallium uptake, indicating viable but denervated myocardium. Denervation distal to infarction was confirmed by reduced norepinephrine content and absence of nerve fluorescence. Nontransmural myocardial infarction showed zones of wall thinning with decreased thallium uptake and a greater reduction or absence of MIBG localized to the region of the infarct, with minimal extension of denervation beyond the infarct. Norepinephrine content was significantly reduced in the infarct zone, and nerve fluorescence was absent.These findings suggest that 1) MIBG imaging can detect viable and perfused but denervated myocardium after infarction; and 2) as opposed to the distal denervation produced by transmural infarction, nontransmural infarction may lead to regional ischemic damage of sympathetic nerves, but may spare subepicardial nerve trunks that course through the region of infarction to provide a source of innervation to distal areas of myocardium
Electric Field Controlled Magnetic Anisotropy in a Single Molecule
We have measured quantum transport through an individual Fe
single-molecule magnet embedded in a three-terminal device geometry. The
characteristic zero-field splittings of adjacent charge states and their
magnetic field evolution are observed in inelastic tunneling spectroscopy. We
demonstrate that the molecule retains its magnetic properties, and moreover,
that the magnetic anisotropy is significantly enhanced by reversible electron
addition / subtraction controlled with the gate voltage. Single-molecule
magnetism can thus be electrically controlled
Anonymous and EST-based microsatellite DNA markers that transfer broadly across the fig genus (Ficus, Moraceae)
• Premise of the study: We developed a set of microsatellite markers for broad utility across the species-rich pantropical tree genus Ficus (fig trees). The markers were developed to study population structure, hybridization, and gene flow in neotropical species.
• Methods and Results: We developed seven novel primer sets from expressed sequence tag (EST) libraries of F. citrifolia and F. popenoei (subgen. Urostigma sect. Americana) and optimized five previously developed anonymous loci for cross-species amplification. The markers were successfully tested on four species from the basal subgenus Pharmacosycea sect. Pharmaco- sycea (F. insipida, F. maxima, F. tonduzii, and F. yoponensis) and seven species of the derived subgenus Urostigma (F. citrifolia, F. colubrinae, F. costaricana, F. nymphaeifolia, F. obtusifolia, F. pertusa, and F. popenoei). The 12 markers amplified consis- tently and displayed polymorphism in all the species.
• Conclusions: This set of microsatellite markers is transferable across the phylogenetic breadth of Ficus, and should therefore be useful for studies of population structure and gene flow in approximately 750 fig species worldwide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92471/1/Heer2012.pdf8
Isolation and characterization of few-layer black phosphorus
Isolation and characterization of mechanically exfoliated black phosphorus
flakes with a thickness down to two single-layers is presented. A modification
of the mechanical exfoliation method, which provides higher yield of atomically
thin flakes than conventional mechanical exfoliation, has been developed. We
present general guidelines to determine the number of layers using optical
microscopy, Raman spectroscopy and transmission electron microscopy in a fast
and reliable way. Moreover, we demonstrate that the exfoliated flakes are
highly crystalline and that they are stable even in free-standing form through
Raman spectroscopy and transmission electron microscopy measurements. A strong
thickness dependence of the band structure is found by density functional
theory calculations. The exciton binding energy, within an effective mass
approximation, is also calculated for different number of layers. Our
computational results for the optical gap are consistent with preliminary
photoluminescence results on thin flakes. Finally, we study the environmental
stability of black phosphorus flakes finding that the flakes are very
hydrophilic and that long term exposure to air moisture etches black phosphorus
away. Nonetheless, we demonstrate that the aging of the flakes is slow enough
to allow fabrication of field-effect transistors with strong ambipolar
behavior. Density functional theory calculations also give us insight into the
water-induced changes of the structural and electronic properties of black
phosphorus.Comment: 11 main figures, 7 supporting figure
The Roots of Diversity: Below Ground Species Richness and Rooting Distributions in a Tropical Forest Revealed by DNA Barcodes and Inverse Modeling
F. Andrew Jones is with the Smithsonian Tropical Research Institute, David L. Erickson is with the Smithsonian Institution, Moises A. Bernal is with the Smithsonian Tropical Research Institute and UT Austin, Eldredge Bermingham is with the Smithsonian Tropical Research Institute, W. John Kress is with the Smithsonian Institution, Edward Allen Herre is with the Smithsonian Tropical Research Institute, Helene C. Muller-Landau is with the Smithsonian Tropical Research Institute, Benjamin L. Turner is with the Smithsonian Tropical Research Institute.Background -- Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions. Methodology/Principal Findings -- DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m2 at the seedling layer and 45 m2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants. Conclusions -- DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.FAJ acknowledges the support of a Tupper postdoctoral fellowship in tropical biology and the National Science Foundation (DEB 0453665). Funding was provided by the Smithsonian Institution Global Earth Observatory, the Smithsonian Tropical Research Institute/Center for Tropical Forest Sciences endowment fund, and the Smithsonian Tropical Research Institute/Frank Levinson fund. We would like to thank Autoridad Nacional del Ambiente and the Smithsonian Tropical Research Institute for processing research permits. We thank S. Hubbell and R. Condit for access to plot data, S. Schnitzer for liana census data (NSF DEB 0613666), and L. Comita and S. Hubbell for access to seedling data (NSF DEB 0075102 and DEB 0823728). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Marine Scienc
Electron-hole symmetry in a semiconducting carbon nanotube quantum dot
Optical and electronic phenomena in solids arise from the behaviour of
electrons and holes (unoccupied states in a filled electron sea). Electron-hole
symmetry can often be invoked as a simplifying description, which states that
electrons with energy above the Fermi sea behave the same as holes below the
Fermi energy. In semiconductors, however, electron-hole symmetry is generally
absent since the energy band structure of the conduction band differs from the
valence band. Here we report on measurements of the discrete, quantized-energy
spectrum of electrons and holes in a semiconducting carbon nanotube. Through a
gate, an individual nanotube is filled controllably with a precise number of
either electrons or holes, starting from one. The discrete excitation spectrum
for a nanotube with N holes is strikingly similar to the corresponding spectrum
for N electrons. This observation of near perfect electron-hole symmetry
demonstrates for the first time that a semiconducting nanotube can be free of
charged impurities, even in the limit of few-electrons or holes. We furthermore
find an anomalously small Zeeman spin splitting and an excitation spectrum
indicating strong electron-electron interactions.Comment: 12 pages, 4 figure
Orbital Kondo effect in carbon nanotubes
Progress in the fabrication of nanometer-scale electronic devices is opening
new opportunities to uncover the deepest aspects of the Kondo effect, one of
the paradigmatic phenomena in the physics of strongly correlated electrons.
Artificial single-impurity Kondo systems have been realized in various
nanostructures, including semiconductor quantum dots, carbon nanotubes and
individual molecules. The Kondo effect is usually regarded as a spin-related
phenomenon, namely the coherent exchange of the spin between a localized state
and a Fermi sea of electrons. In principle, however, the role of the spin could
be replaced by other degrees of freedom, such as an orbital quantum number.
Here we demonstrate that the unique electronic structure of carbon nanotubes
enables the observation of a purely orbital Kondo effect. We use a magnetic
field to tune spin-polarized states into orbital degeneracy and conclude that
the orbital quantum number is conserved during tunneling. When orbital and spin
degeneracies are simultaneously present, we observe a strongly enhanced Kondo
effect, with a multiple splitting of the Kondo resonance at finite field and
predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure
Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry
PREMISE: Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host-associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts. METHODS: First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture-based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography–tandem mass spectrometry. Finally, we tested how inoculation with live and heat-killed endophytes affected the cacao chemical profile. RESULTS: Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat-killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant. CONCLUSIONS: Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant–endophyte interactionsPREMISE: Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host-associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts. METHODS: First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture-based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography–tandem mass spectrometry. Finally, we tested how inoculation with live and heat-killed endophytes affected the cacao chemical profile. RESULTS: Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat-killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant. CONCLUSIONS: Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant–endophyte interaction
- …