87 research outputs found
AnĂĄlisis, cĂĄlculo y diseño de la instalaciĂłn para el suministro de energĂa elĂ©ctrica a una empresa fabricante de latas de bebida.
El presente trabajo fin de grado tiene como objeto el anĂĄlisis, cĂĄlculo y
diseño de una instalación eléctrica de baja tensión, para una empresa
fabricante de latas de aluminio para bebidas. AsĂ mismo, se justificarĂĄn los
cĂĄlculos realizados para el dimensionado de la aparamenta necesaria en la
instalación eléctrica de dicha fåbrica.
El emplazamiento consiste en una nave industrial de 60m x 120m
(7200 m2) con puertas de acceso situadas a lo largo del perĂmetro del edificio.
AdemĂĄs dispone de un edificio anexo a una de las fachadas donde se
encuentra el centro de transformaciĂłn y los servicios generales. La
alimentaciĂłn se realizarĂĄ a 400 V, siendo la previsiĂłn de carga de mĂĄs de 1100
kW.
El presente proyecto estĂĄ estructurado en varios capĂtulos que nos
permiten realizar una descripciĂłn completa de la instalaciĂłn elĂ©ctrica.Departamento de IngenierĂa ElĂ©ctricaGrado en IngenierĂa ElĂ©ctric
Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions
In this article, the innovative cation-exchange membranes obtained from ceramic materials are
presented. Different microporous ceramic supports were obtained from an initial mixture of
alumina and kaolin, to which a varying content of starch was added in order to obtain supports
with different pore size distributions. The deposition of zirconium phosphate into the
porous supports generates membranes with cation-exchange properties. The fabrication of
ion-exchange membranes which could resist aggressive electrolytes such as strong oxidizing
spent chromium plating baths or radioactive solutions would allow the application of electrodialysis
for the decontamination and regeneration of these industrial effluents. The performance
of the manufactured membranes was studied in nickel sulfate solutions by means of
chronopotentiometry. An increase of the membrane voltage drop during chronopotentiometric
measurements was observed in some membranes, which seems to be a consequence of concentration
polarization phenomena resulting from the ionic transfer occurred through the membranes.
Current voltage curves were obtained for the different ceramic membranes, allowing
the calculation of their ohmic resistance. The ohmic resistance of the membranes increased
when the open porosity (OP) of the samples was incremented up to a value of 50%. For values
of OP higher than 50%, the resistance of the membranes decreased significantly with porosity.MartĂ Calatayud, MC.; GarcĂa GabaldĂłn, M.; PĂ©rez-Herranz, V.; Sales, S.; Mestre, S. (2013). Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions. Desalination and Water Treatment. 51(1-3):597-605. doi:10.1080/19443994.2012.714629597605511-3L. Harttinger, Handbook of Effluent Treatment and Recycling for The Metal Finishing Industry, Finishing Publications Ltd.; ASM International, Stevenage 1994.Balagopal, S., Landro, T., Zecevic, S., Sutija, D., Elangovan, S., & Khandkar, A. (1999). Selective sodium removal from aqueous waste streams with NaSicon ceramics. Separation and Purification Technology, 15(3), 231-237. doi:10.1016/s1383-5866(98)00104-xHobbs, D. . (1999). Caustic recovery from alkaline nuclear waste by an electrochemical separation process. Separation and Purification Technology, 15(3), 239-253. doi:10.1016/s1383-5866(98)00105-1Dzyazko, Y. S., Mahmoud, A., Lapicque, F., & Belyakov, V. N. (2006). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209-217. doi:10.1007/s10800-006-9243-7GarcĂa-GabaldĂłn, M., PĂ©rez-Herranz, V., SĂĄnchez, E., & Mestre, S. (2006). Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in eletrochemical reactors. Journal of Membrane Science, 280(1-2), 536-544. doi:10.1016/j.memsci.2006.02.007Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9Tripathi, B. P., & Shahi, V. K. (2007). SPEEKâzirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 316(2), 612-621. doi:10.1016/j.jcis.2007.08.038Clearfield, A., & Smith, G. D. (1969). Crystallography and structure of .alpha.-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorganic Chemistry, 8(3), 431-436. doi:10.1021/ic50073a005Alberti, G., Bernasconi, M. G., Casciola, M., & Costantino, U. (1978). Ion exchange of some divalent and trivalent cations on the surface of zirconium acid phosphate micro-crystals. Journal of Chromatography A, 160(1), 109-115. doi:10.1016/s0021-9673(00)91786-2Yaroslavtsev, A. B. (2003). Ion DiffusionThrow Interface in Heterogeneous Solid Systems with the Modified Surface. Defect and Diffusion Forum, 216-217, 133-140. doi:10.4028/www.scientific.net/ddf.216-217.133Yaroslavtsev, A. B. (2009). Composite materials with ionic conductivity: from inorganic composites to hybrid membranes. Russian Chemical Reviews, 78(11), 1013-1029. doi:10.1070/rc2009v078n11abeh004066Yaroslavtsev, A. B., Nikonenko, V. V., & Zabolotsky, V. I. (2003). Ion transfer in ion-exchange and membrane materials. Russian Chemical Reviews, 72(5), 393-421. doi:10.1070/rc2003v072n05abeh000797Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-eSistat, P., & Pourcelly, G. (1997). Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers. Journal of Membrane Science, 123(1), 121-131. doi:10.1016/s0376-7388(96)00210-4Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012MartĂ-Calatayud, M. C., GarcĂa-GabaldĂłn, M., PĂ©rez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014GarcĂa-GabaldĂłn, M., PĂ©rez-Herranz, V., & Ortega, E. (2011). Evaluation of two ion-exchange membranes for the transport of tin in the presence of hydrochloric acid. Journal of Membrane Science, 371(1-2), 65-74. doi:10.1016/j.memsci.2011.01.015GARCIAGABALDON, M., PEREZHERRANZ, V., SANCHEZ, E., & MESTRE, S. (2008). Effect of tin concentration on the electrical properties of ceramic membranes used as separators in electrochemical reactors. Journal of Membrane Science, 323(1), 213-220. doi:10.1016/j.memsci.2008.06.03
Novel Sb-doped SnO2 ceramic anode coated with a photoactive BiPO4 layer for the photoelectrochemical degradation of an emerging pollutant
In the present work, a study about the electrochemical and photoelectrochemical degradation of an emerging pollutant using an Sb-doped SnO2 anode coated with a photocatalytic layer of BiPO4 has been performed. The electrochemical characterization of the material was carried out by means of linear sweep voltammetry, light-pulsed chronoamperometry and electrochemical impedance spectroscopy. These studies confirmed that the material is photoactive at intermediate potential values (around 2.5 V), and that the charge transfer resistance decreases in the presence of light.
A positive effect of the illuminated area on the degradation degree of norfloxacin was observed: at 15.50 mA cmâ2, the degradation rate was 83.37% in the absence of light, 92.24% with an illuminated area of 5.7 cm2, and it increased up to 98.82% with an illuminated area of 11.4 cm2. The kinetics of the process were evaluated, and the by-products of the degradation were identified by ion chromatography and HPLC. In the case of the mineralization degree, the effect of light is less significant, especially at higher current densities. The specific energy consumption of the process was lower in the photoelectrochemical experiments as compared to the experiments in dark conditions. At intermediate current densities (15.50 mA cmâ2) a decrease in energy consumption of 53% was achieved by illuminating the electrode
Comparison of two different ceramic electrodes based on Sb-SnO2 coated with BiFeO3 and Bi2WO6 for the photoelectrooxidation of an emerging pollutant
In this work, a comparison between novel photoanodes based on Sb-SnO2 (BCE) coated with BiFeO3 (BFO-BCE) and Bi2WO6 (BWO-BCE) was carried out. An improvement in the catalytic activity of the electrodes under light exposure was demonstrated by means of Linear Sweep Voltammetry, light pulsed chronoamperometry and Electrochemical Impedance Spectroscopy, being more notorious at current densities below 25 mA·cmâ2 for the BFO-BCE and above 25 mA·cmâ2 for the BWO-BCE. This improved performance was caused by an increase of the photogenerated oxidizing species. As compared with the uncoated BCE anode used without light, photoelectrooxidation tests led to improvements of around 40% in the degradation degree of norfloxacin (NOR) using both photoanodes at 8.33 mA·cmâ2. This improvement was also observed in the mineralization degree of the model wastewaters, with an increase of 36% and 28% at 25 mA·cmâ2 for the BWO-BCE and BFO-BCE, respectively. The degradation and formation of subproducts was followed by ion chromatography and HPLC analysis, where some of the main intermediates were detected, allowing us to elaborate a degradation route for NOR with these novel electrodes. The Mineralization Current Efficiency (MCE), energy consumption and extent of electrochemical combustion (Ί) showed improvements with light application for both electrodes at high current densities, being the BWO-BCE the one with the highest MCE and Ί at the cost of a slightly higher energy consumption. This showed the importance of light for these electrodes and its impact in the general process performance, which can be of great advantage in future applications
Norfloxacin mineralization under light exposure using Sb-SnO2 ceramic anodes coated with BiFeO3 photocatalyst
Advanced Oxidation Processes have been proven to be an efficient way to remove organic pollutants from wastewaters. In this work, a ceramic electrode of SbâSnO2 (BCE) with a layer of the photocatalytic material BiFeO3 (BFO-BCE), has been characterized electrochemically and further tested for norfloxacin photo-electrooxidation in the presence and absence of light. The electrode photoactivity was highly enhanced thanks to the presence of BiFeO3, as confirmed by Linear Sweep Voltammetry, chronoamperometry and potentiometry, and Electrochemical Impedance Spectroscopy. Additionally, working in galvanostatic mode, a high mineralization of norfloxacin was achieved after 240 min, reaching 62% at 25 mA cmâ2 under light conditions. This value is comparatively higher than the 40% achieved with the BCE. The oxidation byproducts were followed by ionic chromatography and HPLC analysis, which also allowed us to propose an oxidation pathway of the norfloxacin molecule. Finally, some indicators of the reactor performance such as the Mineralization Current Efficiency and the specific energy consumption were analyzed, revealing that lower current densities (8.3 mA cmâ2) led to higher current efficiencies, and that light improved both the current efficiency and energy consumption
Enhanced Atenolol oxidation by ferrites photoanodes grown on ceramic SnO2-Sb2O3 anodes
The increase in the consumption of pharmaceutical compounds has caused the increment of their presence in different body waters. ÎČ-blockers are one of the most dangerous even at low concentrations (ng Lâ1). Anodic oxidation with a boron-doped diamond (BDD) anode presents good results to remove these compounds. However, since this anode is expensive, some cheaper materials are under study. In this work, Sb-doped SnO2 ceramic anodes (BCE) coated with Zn or Cd ferrites, in order to provide photocatalytic properties, have been applied to the degradation of the Atenolol (ATL) ÎČ-blocker. Increasing the applied current increased ATL degradation and mineralization but caused a decrease in mineralization current efficiency (MCE) and an increase in energy consumption (ETOC). Additionally, light irradiation enhanced the ATL mineralization rate between 10% and 20% for both ferrites, although this increase was higher for the cadmium ferrite one. Finally, when the ferrites were compared with BDD and BCE anodes, the oxidizing power of the different anodic materials can be ordered as follows BDD> Cd-Fe> Zn-Fe> BCE. Therefore, both ferrites improved the BCE performance but only the cadmium one appeared as an alternative to the BDD, especially for MCE and ETOC, reaching values of 15% and 0.5 kWh gTOCâ1, respectively
Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration
[EN] Novel Sb-doped SnO2 ceramic electrodes sintered at different temperatures, are applied to the degradation of Reactive Black 5 in both divided and undivided electrochemical reactors. In the undivided reactor the discoloration of the solution took place via the oxidation of RB5 dye, without the corresponding reduction in the chemical oxygen demand for the ceramic electrodes. However, in the divided one, it was possible to achieve the discoloration of the solution while at the same time decreasing the chemical oxygen demand through the ·OH-mediated oxidation, although the chemical oxygen demand degradation took place at a slower rate.The authors thank the financial support from the Ministerio de Economia y Competitividad (Spain) under projects CTQ2015-65202-C2-1-R and RTI2018-101341-B-C21, co-financed with FEDER funds.Droguett, T.; Mora-GĂłmez, J.; GarcĂa GabaldĂłn, M.; Ortega Navarro, EM.; Mestre, S.; Cifuentes, G.; PĂ©rez-Herranz, V. (2020). Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration. Scientific Reports. 10(1):1-11. https://doi.org/10.1038/s41598-020-61501-5S111101Daneshvar, N., Oladegaragoze, A. & Djafarzadeh, N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater. 129, 116â122 (2006).Ćengil, I. A. & Ăzacar, M. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. J. Hazard. Mater. 161, 1369â1376 (2009).Bandala, E. R. et al. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes. Chem. Eng. Process. Process Intensif. 47, 169â176 (2008).Ahmad, A. L. & Puasa, S. W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem. Eng. J. 132, 257â265 (2007).Koyuncu, I. & Topacik, D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep. Purif. Technol. 33, 283â294 (2003).Damodar, R. A., You, S. J. & Chou, H. H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 172, 1321â1328 (2009).Srivastava, H. P., Arthanareeswaran, G., Anantharaman, N. & Starov, V. M. Performance of modified poly(vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination 282, 87â94 (2011).Mook, W. T., Ajeel, M. A., Aroua, M. K. & Szlachta, M. The application of iron mesh double layer as anode for the electrochemical treatment of Reactive Black 5 dye. J. Environ. Sci. (China) 54, 184â195 (2017).Tang, C. & Chen, V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res. 38, 2775â2781 (2004).Aguedach, A., Brosillon, S., Morvan, J. & Lhadi, E. K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B Environ. 57, 55â62 (2005).Sahel, K. et al. Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization. Appl. Catal. B Environ. 77, 100â109 (2007).IĆik, M. & Sponza, D. T. A batch kinetic study on decolorization and inhibition of Reactive Black 5 and Direct Brown 2 in an anaerobic mixed culture. Chemosphere 55, 119â128 (2004).El Bouraie, M. & El Din, W. S. Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 26, 209â216 (2016).Meriç, S., Kaptan, D. & Ălmez, T. Color and COD removal from wastewater containing Reactive Black 5 using Fentonâs oxidation process. Chemosphere 54, 435â441 (2004).DojÄinoviÄ, B. P. et al. Decolorization of Reactive Black 5 using a Dielectric Barrier Discharge in the presence of inorganic salts. J. Serbian Chem. Soc. 77, 535â548 (2012).CerĂłn-Rivera, M., DĂĄvila-JimĂ©nez, M. M. & Elizalde-GonzĂĄlez, M. P. Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere 55, 1â10 (2004).Yavuz, Y. & Shahbazi, R. Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep. Purif. Technol. 85, 130â136 (2012).Vasconcelos, V. M., Ponce-De-LeĂłn, C., Nava, J. L. & Lanza, M. R. V. Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell. J. Electroanal. Chem. 765, 179â187 (2016).Lucas, M. S. & Peres, J. A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dye. Pigment. 71, 236â244 (2006).Song, S., He, Z., Qiu, J., Xu, L. & Chen, J. Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Sep. Purif. Technol. 55, 238â245 (2007).Chang, S. H. et al. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process. J. Hazard. Mater. 175, 850â857 (2010).Daneshvar, N., Salari, D. & Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A Chem. 157, 111â116 (2003).Panizza, M. & Cerisola, G. Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl. Catal. B Environ. 75, 95â101 (2007).MartĂnez-Huitle, C. A. & Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 87, 105â145 (2009).Panizza, M. & Cerisola, G. Electro-Fenton degradation of synthetic dyes. Water Res. 43, 339â44 (2009).KapaĆka, A., FĂłti, G. & Comninellis, C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 38, 7â16 (2008).Panizza, M. & Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191â199 (2005).Panizza, M. & Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 109, 6541â6569 (2009).Brillas, E. & MartĂnez-Huitle, C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166â167, 603â643 (2015).Aquino, J. M., Pereira, G. F., Rocha-Filho, R. C., Bocchi, N. & Biaggio, S. R. Electrochemical degradation of a real textile effluent using boron-doped diamond or ÎČ-PbO2 as anode. J. Hazard. Mater. 192, 1275â1282 (2011).Comninellis, C. & Pulgarin, C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108â112 (1993).Zanta, C. L. P. S., Michaud, P.-A., Comninellis, C., De Andrade, A. R. & Boodts, J. F. C. Electrochemical oxidation of p-chlorophenol on SnO2 âSb2O5 based anodes for wastewater treatment. J. Appl. Electrochem. 33, 1211â1215 (2003).Kötz, R., Stucki, S. & Carcer, B. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 21, 14â20 (1991).Polcaro, A. M., Palmas, S., Renoldi, F. & Mascia, M. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment. J. Appl. Electrochem. 29, 147â151 (1999).MartĂnez-Huitle, C. A. et al. Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD Electrodes. Environ. Sci. Technol. 42, 6929â6935 (2008).Watts, R. J., Wyeth, M. S., Finn, D. D. & Teel, A. L. Optimization of Ti/SnO2âSb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 38, 31â37 (2007).Zhuo, Q., Deng, S., Yang, B., Huang, J. & Yu, G. Efficient Electrochemical Oxidation of Perfluorooctanoate Using a Ti/SnO2-Sb-Bi Anode. Environ. Sci. Technol. 45, 2973â2979 (2011).Lipp, L. & Pletcher, D. The preparation and characterization of tin dioxide coated titanium electrodes. Hecrrochimico Acta 42, 1091â1099 (1997).Zuca, S., Terzi, M., Zaharescu, M. & Matiasovsky, K. Contribution to the study of SnO2-based ceramics. J. Mater. Sci. 26, 1673â1676 (1991).Park, S.-Y., Mho, S.-I., Chi, E. O., Kwon, Y. U. & Park, H. L. Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials. Thin Solid Films 258, 5â9 (1995).Chen, G., Betterton, E. A. & Arnold, R. G. Electrolytic oxidation of trichloroethylene using a ceramic anode. J. Appl. Electrochem. 29, 961â970 (1999).Scialdone, O., Galia, A. & Filardo, G. Electrochemical incineration of 1,2-dichloroethane: Effect of the electrode material. Electrochim. Acta 53, 7220â7225 (2008).Bejan, D., Malcolm, J. D., Morrison, L. & Bunce, N. J. Mechanistic investigation of the conductive ceramic EbonexÂź as an anode material. Electrochim. Acta 54, 5548â5556 (2009).Zaky, A. M. & Chaplin, B. P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment. Environ. Sci. Technol. 47, 6554â6563 (2013).Zhang, C. et al. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 228, 455â467 (2013).Mora-GĂłmez, J. et al. Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceram. Int. 44, 2216â2222 (2018).Mora-GĂłmez, J., Ortega, E., Mestre, S., PĂ©rez-Herranz, V. & GarcĂa-GabaldĂłn, M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep. Purif. Technol. 208, 68â75 (2019).Montilla, F., MorallĂłn, E., De Battisti, A. & VĂĄzquez, J. L. Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. J. Phys. Chem. B 108, 5036â5043 (2004).Zhang, L., Xu, L., He, J. & Zhang, J. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta 117, 192â201 (2014).MartĂnez-Huitle, C. A., dos Santos, E. V., de AraĂșjo, D. M. & Panizza, M. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J. Electroanal. Chem. 674, 103â107 (2012).Correa-Lozano, B., Comninellis, C. & De Battisti, A. Service life of Ti/SnO2âSb2O5 anodes. J. Appl. Electrochem. 27, 970â974 (1997).Loge, F. J., Inouye, T. & Watts, R. J. Disinfection of Secondary Effluents Using Tin Oxide Anodes. Water Environ. Res. 78, 41â48 (2006).Wu, W., Huang, Z.-H., Hu, Z.-T., He, C. & Lim, T.-T. High performance duplex-structured SnO2-Sb-CNT composite anode for bisphenol A removal. Sep. Purif. Technol. 179, 25â35 (2017).Ding, H. yang, Feng, Y. jie & Liu, J. feng. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition. Mater. Lett. 61, 4920â4923 (2007).Chen, A. & Nigro, S. Influence of a Nanoscale Gold Thin Layer on Ti/SnO2-Sb2O5 Electrodes. J. Phys. Chem. B 107, 13341â13348 (2003).Kang, S. F., Liao, C. H. & Hung, H. P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. J. Hazard. Mater. 65, 317â333 (1999).Feng, J., Hu, X., Yue, P. L., Zhu, H. Y. & Lu, G. Q. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction. Water Res. 37, 3776â3784 (2003).MĂ©ndez-MartĂnez, A. J. et al. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochim. Acta 59, 140â149 (2012).Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L. & Gallios, G. Degradation of Reactive Black 5 by electrochemical oxidation. Chemosphere 190, 405â416 (2018).Chen, X., Chen, G. & Yue, P. L. Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chem. Eng. Sci. 58, 995â1001 (2003).El-Ghenymy, A. et al. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim. Acta 130, 568â576 (2014).Guenfoud, F., Mokhtari, M. & Akrout, H. Electrochemical degradation of malachite green with BDD electrodes: Effect of electrochemical parameters. Diam. Relat. Mater. 46, 8â14 (2014).Koparal, A. S., Yavuz, Y., GĂŒrel, C. & ĂÇ§ĂŒtveren, Ă. B. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J. Hazard. Mater. 145, 100â108 (2007).Panakoulias, T., Kalatzis, P., Kalderis, D. & Katsaounis, A. Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J. Appl. Electrochem. 40, 1759â1765 (2010).Vasconcelos, V. M. et al. Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochim. Acta 178, 484â493 (2015).GarcĂa-Montaño, J., DomĂšnech, X., GarcĂa-Hortal, J. A., Torrades, F. & Peral, J. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. J. Hazard. Mater. 154, 484â490 (2008).Correa-Lozano, B., Comninellis, C. & De Battisti, A. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique. J. Appl. Electrochem. 26, 683â688 (1996).Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M. A. & Comninellis, C. Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 150, D79âD83 (2003).Chen, X., Gao, F. & Chen, G. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem. 35, 185â191 (2005).Guinea, E. et al. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim. Acta 55, 2101â2115 (2010).SirĂ©s, I., Brillas, E., Oturan, M. A., Rodrigo, M. A. & Panizza, M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. Int. 21, 8336â8367 (2014)
Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater
[EN] The properties of the ceramic electrodes make them interesting for electrochemical advanced oxidation processes (EAOPs), destined to the elimination of emergent or refractory contaminants, as an alternative to boron doped-diamond (BDD) electrodes. For this purpose, new ceramic electrodes based on Sb-doped SnO2 have been developed. Sb-doped tin oxide electrodes have been obtained through mechanical mixing of raw materials and sintering of dry-pressed specimens. Different sintering temperatures (1050 degrees C to 1250 degrees C) were considered. The electrochemical behavior of the resulting electrodes has been compared to that exhibited by Pt and BDDs electrodes. The oxygen discharge potential (E-02) for the ceramic electrodes decreases as the sintering temperature increases, being these values higher than that observed for the Pt electrode and smaller than that for the BDD electrode. This result in a highest rate of COD removal for the electrode sintered at 1050 degrees C comparing with the rest of ceramic electrodes under potentiostatic operation. On the other hand, in galvanostatic mode, the performance of the different ceramic electrodes in terms of the degradation of Norfloxacin, used as tested antibiotic, was similar.
Comparing the behavior of the ceramic electrode sintered at 1250 degrees C and that of the BDD electrode at an applied potential of 3 V, it is inferred that although both present similar values in terms of the degradation of Norfloxacin, the rate of removal of the chemical oxygen demand is higher in the case of the BDD.The authors thanks to Ministerio de Economia y Competitividad (projects number: CTQ2015-65202-C2-1-R and CTQ2015-65202-C2-2R) and to Fondo Europeo de Desarrollo Regional (FEDER) the support to this research.Mora-GĂłmez, J.; GarcĂa GabaldĂłn, M.; Ortega Navarro, EM.; SĂĄnchez-Rivera, M.; Mestre, S.; PĂ©rez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the
removal of emerging compounds present in wastewater. Ceramics International. 44(2):2216-2222. https://doi.org/10.1016/j.ceramint.2017.10.178S2216222244
Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes
This is the peer reviewed version of the following article: Giner-Sanz, J. J., Sanchez-Rivera, M. J., Garcia-Gabaldon, M., Ortega, E. M., Mestre, S., & Perez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. https://doi.org/10.1002/celc.201801766, which has been published in final form at https://doi.org/10.1002/celc.201801766. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This work explores the possibility of increasing the active surface
of a Sb-doped SnO2 ceramic electrode using CuO as sintering aid, by incorporating petroleum coke as a pore generator. In order to fulfil this goal, three series of (Sb, Sn, Cu)O electrodes with different
coke contents were synthetized. The properties of the electrodes, and their microstructure, change significantly as a function of the coke content before sintering. The electrochemical characterization of the synthesized electrodes showed that the coke addition before sintering
causes two antagonist effects on the performance of the (Sn, Sb, Cu)O as anodes in electrochemical advanced oxidation processes (EAOP). On one hand, it significantly improves the electrochemical roughness
factor of the electrode, solving the densification problem in this way. On the other hand, it worsens the electrochemical behavior
of the electrode: narrowing its electrochemical window; and ÂżactivatingÂż it slightly. The addition of coke before sintering
changes the kinetic parameters, leading to a kinetic situation
in which the accumulation of hydroxyl radicals is slightly lower. A balance must be sought: an intermediate coke content will improve significantly the electrochemical roughness factor of the electrode, but will only worsen slightly its electrochemical behavior, leading
to an optimum (Sn, Sb, Cu)O EAOP anode.The authors are very grateful to the Ministerio de Economia y
Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015-
65202-C2-2-R) and to the European Regional Development Fund
(FEDER), for their economic support.Giner-Sanz, JJ.; SĂĄnchez-Rivera, MJ.; GarcĂa GabaldĂłn, M.; Ortega Navarro, EM.; Mestre, S.; PĂ©rez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem. 6(9):2430-2437. https://doi.org/10.1002/celc.201801766S2430243769Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global Water Pollution and Human Health. Annual Review of Environment and Resources, 35(1), 109-136. doi:10.1146/annurev-environ-100809-125342Alizadeh Fard, M., & Barkdoll, B. (2018). Effects of oxalate and persulfate addition to Electrofenton and Electrofenton-Fenton processes for oxidation of Ketoprofen: Determination of reactive species and mass balance analysis. Electrochimica Acta, 265, 209-220. doi:10.1016/j.electacta.2018.01.153Oller, I., Malato, S., & SĂĄnchez-PĂ©rez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontaminationâA review. Science of The Total Environment, 409(20), 4141-4166. doi:10.1016/j.scitotenv.2010.08.061Yang, L., Zhang, Z., Liu, J., Huang, L., Jia, L., & Feng, Y. (2018). Influence of Gd Doping on the Structure and Electrocatalytic Performance of TiO2
Nanotube/SnO2
âSb Nano-coated Electrode. ChemElectroChem, 5(22), 3451-3459. doi:10.1002/celc.201801079Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037Turkay, O., BarıĆçı, S., Ulusoy, E., Ćeker, M. G., & Dimoglo, A. (2018). Anodic oxidation of anti-cancer drug Imatinib on different electrodes: Kinetics, transformation by-products and toxicity assessment. Electrochimica Acta, 263, 400-408. doi:10.1016/j.electacta.2018.01.079A. Kouskouki E. Chatzisymeon D. Mantzavinos Z. Frontistis ChemElectroChem2018 DOI 10.1002/celc.201800971.D. Dionisio A.â
J. Motheo C. SĂĄez P. Canizares M.â
A. Rodrigo ChemElectroChem2018 DOI 10.1002/celc.201801332.Dos Santos, A. J., MartĂnez-Huitle, C. A., SirĂ©s, I., & Brillas, E. (2017). Use of Pt and Boron-Doped Diamond Anodes in the Electrochemical Advanced Oxidation of Ponceau SS Diazo Dye in Acidic Sulfate Medium. ChemElectroChem, 5(4), 685-693. doi:10.1002/celc.201701238Silveira, J. E., Garcia-Costa, A. L., Cardoso, T. O., Zazo, J. A., & Casas, J. A. (2017). Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochimica Acta, 258, 927-932. doi:10.1016/j.electacta.2017.11.143Pereira, G. F., Silva, B. F., Oliveira, R. V., Coledam, D. A. C., Aquino, J. M., Rocha-Filho, R. C., ⊠Biaggio, S. R. (2017). Comparative electrochemical degradation of the herbicide tebuthiuron using a flow cell with a boron-doped diamond anode and identifying degradation intermediates. Electrochimica Acta, 247, 860-870. doi:10.1016/j.electacta.2017.07.054Farinos, R. M., & Ruotolo, L. A. M. (2017). Comparison of the electrooxidation performance of three-dimensional RVC/PbO2 and boron-doped diamond electrodes. Electrochimica Acta, 224, 32-39. doi:10.1016/j.electacta.2016.12.025Li, H., Long, Y., Zhu, X., Tian, Y., & Ye, J. (2017). Influencing factors and chlorinated byproducts in electrochemical oxidation of bisphenol A with boron-doped diamond anodes. Electrochimica Acta, 246, 1121-1130. doi:10.1016/j.electacta.2017.06.163Li, L., Huang, Z., Fan, X., Zhang, Z., Dou, R., Wen, S., ⊠Hu, Y. (2017). Preparation and Characterization of a Pd modified Ti/SnO 2 -Sb anode and its electrochemical degradation of Ni-EDTA. Electrochimica Acta, 231, 354-362. doi:10.1016/j.electacta.2017.02.072Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679dYang, D., Gu, Y., Yu, X., Lin, Z., Xue, H., & Feng, L. (2018). Nanostructured Ni2
P-C as an Efficient Catalyst for Urea Electrooxidation. ChemElectroChem, 5(4), 659-664. doi:10.1002/celc.201701304Cotillas, S., Llanos, J., Cañizares, P., Clematis, D., Cerisola, G., Rodrigo, M. A., & Panizza, M. (2018). Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 263, 1-7. doi:10.1016/j.electacta.2018.01.052Poyatos, J. M., Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., & Osorio, F. (2009). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. doi:10.1007/s11270-009-0065-1SirĂ©s, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336-8367. doi:10.1007/s11356-014-2783-1Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and EbonexÂź anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097D.â
A. GarcĂa-Osorio R. Jaimes J. Vazquez-Arenas R.â
H. Lara J. Alvarez-Ramirez J. Electrochem. Soc.2017 164 E3321âE3328.Fleszar, B., & PoÌ”szyĆska, J. (1985). An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochimica Acta, 30(1), 31-42. doi:10.1016/0013-4686(85)80055-4Mora-GĂłmez, J., GarcĂa-GabaldĂłn, M., Ortega, E., SĂĄnchez-Rivera, M.-J., Mestre, S., & PĂ©rez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178Grimm, J., Bessarabov, D., Maier, W., Storck, S., & Sanderson, R. D. (1998). Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination, 115(3), 295-302. doi:10.1016/s0011-9164(98)00048-4Adams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-xScarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.xMihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4Rubenis, K., Populoh, S., Thiel, P., Yoon, S., MĂŒller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062Lorente-Ayza, M.-M., Orts, M. J., PĂ©rez-Herranz, V., & Mestre, S. (2015). Role of starch characteristics in the properties of low-cost ceramic membranes. Journal of the European Ceramic Society, 35(8), 2333-2341. doi:10.1016/j.jeurceramsoc.2015.02.026Lorente-Ayza, M.-M., Mestre, S., Sanz, V., & SĂĄnchez, E. (2016). On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes. Ceramics International, 42(16), 18944-18954. doi:10.1016/j.ceramint.2016.09.046Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-xReier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098Kïżœtz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372fLiu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066Orazem, M. E., & Tribollet, B. (2008). Electrochemical Impedance Spectroscopy. doi:10.1002/9780470381588Agarwal, P., Orazem, M. E., & GarciaâRubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the KramersâKronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Montecarlo based quantitative KramersâKronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jesGiner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s14081394
Study of the chlorfenvinphos pesticide removal under different anodic materials and different reactor configuration
The present manuscript focuses on the study of the electrochemical oxidation of the insecticide Chlorfenvinphos (CVP). The assays were carried out under galvanostatic conditions using boron-doped diamond (BDD) and low-cost tin dioxide doped with antimony (Sb-doped SnO2) as anodes. The influence of the operating variables, such as applied current density, presence or absence of a cation-exchange membrane and concentration of supporting electrolyte, was discussed. The results revealed that the higher applied current density the higher degradation and mineralization of the insecticide for both anodes. The presence of the membrane and the highest concentration of Na2SO4 studied (0.1 M) as a supporting electrolyte benefited the oxidation process of CVP using the BDD electrode, while with the ceramic anode the elimination of CVP was lower under these experimental conditions. Although the BDD electrode showed the best performance, ceramic anodes appear as an interesting alternative as they were able to degrade CVP completely for the highest applied current density values. Toxicity tests revealed that the initial solution of CVP was more toxic than the samples treated with the ceramic electrode, while using the BDD electrode the toxicity of the sample increased
- âŠ