12 research outputs found

    DENDRITIC IMMUNE-COMPLEX TRAPPING CELLS IN THE SPLEEN OF THE SNAKE, PYTHON-RETICULATUS

    No full text
    The spleen of the snake Pythonreticulatus, was investigated as to its general histology as well as the presence of immune complex trapping cells both at the light and electron microscopical level. Histological examination revealed that the spleen of this reptile was encapsulated and contained some trabeculae. In the splenic parenchyma two different regions could be distinguished: viz. red and white pulp. The white pulp appeared to be arranged around “central arterioles” and their smaller branches extending towards the periphery of the white pulp. The red pulp was composed of blood sinusoids and cell cords. Electron microscopy revealed at least three types of non-lymphoid cells in the white pulp of the spleen of python: (1) reticulum cells, forming the framework; (2) some macrophages and (3) dendritic cells predominantly located in the periphery of the white pulp. Of these types of non-lymphoid cells, only dendritic cells were able to trap and to retain intravenously injected horseradish peroxidase (HRP)-rabbit-anti-HRP immune complexes on their cell surface as determined by enzymehistochemistry at the light and electron microscopical level. These dendritic cells were frequently found in association with collagen fibres and did not engulf large quantities of carbon particles. These data suggest that dendritic cells in the spleen of the python might be the phylogenetic precursors of the mammalian follicular dendritic cells

    Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures

    Get PDF
    Changes in the epigenetic regulation of gene expression have a central role in evolution. Here, we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further complemented with whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated chromatin contact maps to define gene regulatory architectures, creating the largest catalog of RE in primates to date. We report that epigenetic conservation and its correlation with sequence conservation in primates depends on the activity state of the regulatory element. Our gene regulatory architectures reveal the coordination of different types of components and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene expression. We observe that most regulatory changes occur in weakly active gE. Remarkably, novel human-specific gE with weak activities are enriched in human-specific nucleotide changes. These elements appear in genes with signals of positive selection and human acceleration, tissue-specific expression, and particular functional enrichments, suggesting that the regulatory evolution of these genes may have contributed to human adaptation.R.G.-P. was supported by a fellowship from MICINN (FPU13/01823). P.E.-C. was supported by a Formació de Personal Investigador fellowship from Generalitat de Catalunya (FI_B00122). M.K. was supported by a Deutsche Forschungsgemeinschaft (DFG) fellowship (KU 3467/1-1) and the Postdoctoral Junior Leader Fellowship Program from “la Caixa” Banking Foundation (LCF/BQ/PR19/11700002). D.J. was supported by a Juan de la Cierva fellowship (FJCI2016-29558) from MICINN. T.M-B. is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement EC-H2020-ERC-CoG-ApeGenomeDiversity-864203), BFU2017-86471-P (AEI/FEDER, UE), “Unidad de Excelencia María de Maeztu”, funded by the AEI (CEX2018-000792-M), Howard Hughes International Early Career, NIH 1R01HG010898-01A1, Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Program del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880). G.M., V.D.C., and L.D.C. were supported by grants from the Spanish of Economy, Industry, and Competitiveness (MEIC) (BFU2016-75008-P) and G.M. was also supported by the “Convocatoria de Ayudas Fundación BBVA a Investigadores, Innovadores y Creadores Culturales”. J.L.G.-S. was supported by the Spanish government (grants BFU2016-74961-P), an institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740041). A.N. was supported by Fondo Europeo de Desarrollo Regional (FEDER) with project grants BFU2016-77961-P and PGC2018- 101927-B-I00 and by the Spanish National Institute of Bioinformatics (PT17/0009/0020)

    Unravelling the role of epigenetics in reproductive adaptations to early-life environment

    Get PDF
    Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause–effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications
    corecore