240 research outputs found
Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial
Abstract Introduction Benzodiazepines and α2 adrenoceptor agonists exert opposing effects on innate immunity and mortality in animal models of infection. We hypothesized that sedation with dexmedetomidine (an α2 adrenoceptor agonist), as compared with lorazepam (a benzodiazepine), would provide greater improvements in clinical outcomes among septic patients than among non-septic patients. Methods In this a priori-determined subgroup analysis of septic vs non-septic patients from the MENDS double-blind randomized controlled trial, adult medical/surgical mechanically ventilated patients were randomized to receive dexmedetomidine-based or lorazepam-based sedation for up to 5 days. Delirium and other clinical outcomes were analyzed comparing sedation groups, adjusting for clinically relevant covariates as well as assessing interactions between sedation group and sepsis. Results Of the 103 patients randomized, 63 (31 dexmedetomidine; 32 lorazepam) were admitted with sepsis and 40 (21 dexmedetomidine; 19 lorazepam) without sepsis. Baseline characteristics were similar between treatment groups for both septic and non-septic patients. Compared with septic patients who received lorazepam, the dexmedetomidine septic patients had 3.2 more delirium/coma-free days (DCFD) on average (95% CI for difference, 1.1 to 4.9), 1.5 (-0.1, 2.8) more delirium-free days (DFD) and 6 (0.3, 11.1) more ventilator-free days (VFD). The beneficial effects of dexmedetomidine were more pronounced in septic patients than in non-septic patients for both DCFDs and VFDs (P-value for interaction = 0.09 and 0.02 respectively). Additionally, sedation with dexmedetomidine, compared with lorazepam, reduced the daily risk of delirium [OR, CI 0.3 (0.1, 0.7)] in both septic and non-septic patients (P-value for interaction = 0.94). Risk of dying at 28 days was reduced by 70% [hazard ratio 0.3 (0.1, 0.9)] in dexmedetomidine patients with sepsis as compared to the lorazepam patients; this reduction in death was not seen in non-septic patients (P-value for interaction = 0.11). Conclusions In this subgroup analysis, septic patients receiving dexmedetomidine had more days free of brain dysfunction and mechanical ventilation and were less likely to die than those that received a lorazepam-based sedation regimen. These results were more pronounced in septic patients than in non-septic patients. Prospective clinical studies and further preclinical mechanistic studies are needed to confirm these results. Trial Registration NCT00095251
An Intersectional Approach to Equity, Inequity, and Archaeology
The year 2020 was an awakening for some. For others, it reiterated the persistent social injustice in the United States. Compelled by these events, 30 diverse individuals came together from January to May 2021 for a semester-long seminar exploring inequity in archaeological practice. The seminar's discussions spotlighted the inequity and social injustices that are deeply embedded within the discipline. However, inequity in archaeology is often ignored or treated narrowly as discrete, if loosely bound, problems. A broad approach to inequity in archaeology revealed injustice to be intersectional, with compounding effects. Through the overarching themes of individual, community, theory, and practice, we (a subset of the seminar's participants) explore inequity and its role in various facets of archaeology, including North-South relations, publication, resource distribution, class differences, accessibility, inclusive theories, service to nonarchaeological communities, fieldwork, mentorship, and more. We focus on creating a roadmap for understanding the intersectionality of issues of inequity and suggesting avenues for continued education and direct engagement. We argue that community-building - by providing mutual support and building alliances - provides a pathway for realizing greater equity in our discipline.Fil: Rivera Prince, Jordi A.. University of Florida; Estados UnidosFil: Blackwood, Emily M.. University of Maine; Estados UnidosFil: Brough, Jason A.. University of Maine; Estados UnidosFil: Landázuri, Heather A.. University of Maine; Estados UnidosFil: Leclerc, Elizabeth L.. University of Maine; Estados UnidosFil: Barnes, Monica. American Museum of Natural History; Estados UnidosFil: Brasil, Kareen Kristina. Columbia University; Estados UnidosFil: Gutierrez, Maria Amelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano; ArgentinaFil: Herr, Sarah. Desert Archaeology, Inc.; MéxicoFil: Maasch, Kirk A.. University of Maine; Estados UnidosFil: Sandweiss, Daniel H.. University of Maine; Estados Unido
Loss of α-catenin elicits a cholestatic response and impairs liver regeneration
The liver is unique in its capacity to regenerate after injury, during which hepatocytes actively divide and establish cell-cell contacts through cell adhesion complexes. Here, we demonstrate that the loss of α-catenin, a well-established adhesion component, dramatically disrupts liver regeneration. Using a partial hepatectomy model, we show that regenerated livers from α-catenin knockdown mice are grossly larger than control regenerated livers, with an increase in cell size and proliferation. This increased proliferation correlated with increased YAP activation, implicating α-catenin in the Hippo/YAP pathway. Additionally, α-catenin knockdown mice exhibited a phenotype reminiscent of clinical cholestasis, with drastically altered bile canaliculi, elevated levels of bile components and signs of jaundice and inflammation. The disrupted regenerative capacity is a result of actin cytoskeletal disorganisation, leading to a loss of apical microvilli, dilated lumens in the bile canaliculi, and leaky tight junctions. This study illuminates a novel, essential role for α-catenin in liver regeneration
A Plant-Specific Transcription Factor IIB-Related Protein, pBRP2, Is Involved in Endosperm Growth Control
General transcription factor IIB (TFIIB) and TFIIB-related factor (BRF), are conserved RNA polymerase II/III (RNAPII/III) selectivity factors that are involved in polymerase recruitment and transcription initiation in eukaryotes. Recent findings have shown that plants have evolved a third type of B-factor, plant-specific TFIIB-related protein 1 (pBRP1), which seems to be involved in RNAPI transcription. Here, we extend the repertoire of B-factors in plants by reporting the characterization of a novel TFIIB-related protein, plant-specific TFIIB-related protein 2 (pBRP2), which is found to date only in the Brassicacea family. Unlike other B-factors that are ubiquitously expressed, PBRP2 expression is restricted to reproductive organs and seeds as shown by RT-PCR, immunofluorescence labelling and GUS staining experiments. Interestingly, pbrp2 loss-of-function specifically affects the development of the syncytial endosperm, with both parental contributions required for wild-type development. pBRP2, is the first B-factor to exhibit cell-specific expression and regulation in eukaryotes, and might play a role in enforcing bi-parental reproduction in angiosperms
The stranding anomaly as population indicator: the case of Harbour Porpoise <i>Phocoena phocoena</i> in North-Western Europe
Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H-0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise <i>Phocoena phocoena</i> for our modelling. The difference between these strandings expected under H-0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna
Swarm Learning for decentralized and confidential clinical machine learning
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine
Mycobacteria activate γδ T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy
Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer
Reg3α concentrations at day of allogeneic stem cell transplantation predict outcome and correlate with early antibiotic use
Intestinal microbiome diversity plays an important role in the pathophysiology of acute gastrointestinal (GI) graft-versus-host disease (GVHD) and influences the outcome of patients after allogeneic stem cell transplantation (ASCT). We analyzed clinical data and blood samples taken preconditioning and on the day of ASCT from 587 patients from 7 German centers of the Mount Sinai Acute GVHD International Consortium, dividing them into single-center test (n = 371) and multicenter validation (n = 216) cohorts. Regenerating islet–derived 3α (Reg3α) serum concentration of day 0 correlated with clinical data as well as urinary 3-indoxylsulfate (3-IS) and Clostridiales group XIVa, indicators of intestinal microbiome diversity. High Reg3α concentration at day 0 of ASCT was associated with higher 1-year transplant-related mortality (TRM) in both cohorts (P < .001). Cox regression analysis revealed high Reg3α at day 0 as an independent prognostic factor for 1-year TRM. Multivariable analysis showed an independent correlation of high Reg3α concentrations at day 0 with early systemic antibiotic (AB) treatment. Urinary 3-IS (P = .04) and Clostridiales group XIVa (P = .004) were lower in patients with high vs those with low day 0 Reg3α concentrations. In contrast, Reg3α concentrations before conditioning therapy correlated neither with TRM nor disease or treatment-related parameters. Reg3α, a known biomarker of acute GI GVHD correlates with intestinal dysbiosis, induced by early AB treatment in the period of pretransplant conditioning. Serum concentrations of Reg3α measured on the day of graft infusion are predictive of the risk for TRM of ASCT recipients
- …