43 research outputs found

    The relentless march of mass coral bleaching: a global perspective of changing heat stress

    Get PDF
    The global coral bleaching event of 2014-2017 resulted from the latest in a series of heat stress events that have increased in intensity. We assessed global- and basin-scale variations in sea surface temperature-based heat stress products for 1985-2017 to provide the context for how heat stress during 2014-2017 compared with the past 3 decades. Previously, undefined "Heat Stress Year" periods (used to describe interannual variation in heat stress) were identified for the Northern and Southern Hemispheres, in which heat stress peaks during or shortly after the boreal and austral summers, respectively. The proportion of reef pixels experiencing bleaching-level heat stress increased through the record, accelerating during the last decade. This increase in accumulated heat stress at a bleaching level is a result of longer stress events rather than an increase in the peak stress intensity. Thresholds of heat stress extent for the three tropical ocean basins were established to designate "global" events, and a Global Bleaching Index was defined that relates heat stress extent to that observed in 1998. Notably, during the 2014-2017 global bleaching event, more than three times as many reefs were exposed to bleaching-level heat stress as in the 1998 global bleaching

    The impact of farming on prehistoric culinary practices throughout Northern Europe

    Get PDF
    To investigate changes in culinary practices associated with the arrival of farming, we analysed the organic residues of over 1,000 pottery vessels from hunter-gatherer-fisher and early agricultural sites across Northern Europe from the Lower Rhine Basin to the Northeastern Baltic. Here, pottery was widely used by hunter-gatherer-fishers prior to the introduction of domesticated animals and plants. Overall, there was surprising continuity in the way that hunter-gatherer-fishers and farmers used pottery. Both aquatic products and wild plants remained prevalent, a pattern repeated consistently across the study area. We argue that the rapid adaptation of farming communities to exploit coastal and lagoonal resources facilitated their northerly expansion, and in some cases, hunting, gathering, and fishing became the most dominant subsistence strategy. Nevertheless, dairy products frequently appear in pottery associated with the earliest farming groups often mixed with wild plants and fish. Interestingly, we also find compelling evidence of dairy products in hunter-gatherer-fisher Ertebølle pottery, which predates the arrival of domesticated animals. We propose that Ertebølle hunter-gatherer-fishers frequently acquired dairy products through exchange with adjacent farming communities prior to the transition. The continuity observed in pottery use across the transition to farming contrasts with the analysis of human remains which shows substantial demographic change through ancient DNA and, in some cases, a reduction in marine consumption through stable isotope analysis. We postulate that farmers acquired the knowledge and skills they needed to succeed from local hunter-gatherer-fishers but without substantial admixture

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Climate variability and change: monitoring data and evidence for increased coral bleaching stress

    No full text
    Coral reefs live within a fairly narrow envelope of environmental conditions constrained by water temperatures, light, salinity, nutrients, bathymetry and the aragonite saturation state of seawater (Buddemeier and Kinzie 1976; Kleypas et al. 1999; Hoegh-Guldberg 2005). Their natural environment, at the interface of land, sea and the atmosphere, can vary quickly and potentially be stressful. Reef organisms have, over millions of years, evolved strategies to cope with occasional environmental disturbances (such as tropical cyclones). Given sufficient time between disturbances, damage or destruction would normally be followed by recovery and regrowth (Buddemeier et al. 2004). As documented in numerous scientific studies and reports, the world's coral reefs are "in crisis" as a result of direct local- and regional-scale human impacts on their environment. These impacts include overfishing, destructive fishing practices, changed land-use that increases sediment, nutrient and pollutant flows into reef waters, and poorly designed coastal development. This ecosystem degradation is largely occurring in the many tropical countries whose increasing populations are heavily dependent on coral reefs yet have insufficient resources to develop appropriate, sustainable management practices (Wilkinson 2004). Coral reefs are now confronted with additional global-scale stresses due to the introduction of enhanced greenhouse gases that are rapidly changing coral reefs' environmental envelope through both ocean acidification and increased thermal stress due to climate change (Hoegh-Guldberg et al. 2007)

    ReefTemp Next Generation: a new operational system for monitoring reef thermal stress

    No full text
    The expected increase in the frequency of mass coral bleaching under climate change underlines the importance of thermal stress monitoring systems for coral reef management. ReefTemp Next Generation (RTNG) is a sophisticated remote sensing application designed to operationally monitor the ocean temperatures that can lead to coral bleaching across the Great Barrier Reef. Products are derived from state-of-the-art satellite data; and newly calculated climatologies and management thresholds for bleaching are presented. RTNG is a key component of the Great Barrier Reef Marine Park Authority's Early Warning System, which informs management action and response strategies

    Stereotactic Body Radiotherapy (SBRT) for primary and recurrent head and neck tumors

    No full text
    10.1016/j.oraloncology.2012.12.009Oral Oncology495401-406EJCC

    Improvements to and continuity of operational global thermal stress monitoring for coral bleaching

    No full text
    Mass coral bleaching results from periods of elevated sea temperature. Satellite monitoring of thermal stress has enhanced the capacity for the management of coral bleaching events worldwide. Satellite-based monitoring tools provide reef managers with cost-effective observations of temperature conditions to monitor the risk of bleaching and to target in situ observations in areas under stress. This paper describes improvements to satellite remote sensing products from NOAA's Coral Reef Watch to enhance product coverage and to correct identified errors in the production of coral reef-specific metrics for thermal stress. In addition, threats to the operational production of the thermal stress metrics are considered and a contingency plan is described to ensure continuity of operations
    corecore