5,945 research outputs found
ANALISIS PENGARUH SEKTOR INDUSTRI KECIL, INDUSTRI MENENGAH DAN INDUSTRI BESAR TERHADAP PENDAPATAN ASLI DAERAH KOTA SURABAYA TAHUN 2014-2018
Hero Maulana Ananda Putra 2021, 201410180311132, Universitas Muhammadiyah Malang, Fakultas Ekonomi Dan Bisnis, Program Studi Ekonomi Pembangunan, ANALISIS PENGARUH SEKTOR INDUSTRI KECIL, INDUSTRI MENENGAH DAN INDUSTRI BESAR TERHADAP PENDAPATAN ASLI DAERAH KOTA SURABAYA TAHUN 2014-2018
Pendapatan Asli Daerah (PAD) sebagai salah satu indikator dari
kemandirian otonomi daerah dalam menggali potensi untuk meningkatkan
sumber-sumber penerimaan dan besarnya kontribusi pengeluaran pemerintah
daerah terhadap pertumbuhan ekonomi daerah seharusnya sebagai sebuah peluang yang dapat dimanfaatkan secara optimal untuk mendorong perekonomian daerah. Pendapatan Asli Daerah (PAD) yang semakin besar, maka semakin mandiri daerah tersebut dalam mengambil keputusan dan kebijakan pembangunan.
Kabupaten maupun kota di Indonesia memiliki kewenangan yang lebih luas untuk membangun daerahnya sendiri setelah diberlakukannya otonomi daerah. Otonomi daerah diatur dalam Undang-Undang No. 32 Tahun 2004 dan kemudian diamandemen menjadi Undang-Undang No. 23 Tahun 2014 tentang Pemerintahan Daerah, yang mana keberadaan pemerintahan daerah mempunyai hak penuh untuk kewenangan dan kewajiban mengatur daerahnya sendiri secara mandiri, termasuk keuangan daerahnya sendiri yang diatur oleh Undang-Undang No. 33 Tahun 2004 tentang Perimbangan Keuangan antara Pemerintah Pusat dan Pemerintah Daerah. Kewenangan otonomi yang luas mewajibkan pemerintah daerah meningkatkan pelayanan serta kesejahteraan masyarakat secara demokratis, adil, merata dan berkesinambungan (Halim, 2016).
Berdasarkan hasil pembahasan penelitian yang telah dilakukan, maka dapat disimpulkan sebagai berikut:
1. Nilai Produksi Industri Kecil berpengaruh positif signifikan terhadap Pendapatan Asli Daerah (PAD). Hal ini menunjukkan bahwa ketika terjadi peningkatan pada PDRB Industri, khususnya nilai produksi industri kecil akan meningkatkan Pendapatan Asli Daerah (PAD) Kota Surabaya.
2. Nilai Produksi Industri Menengah berpengaruh positif signifikan terhadap Pendapatan Asli Daerah (PAD). Hal ini menunjukkan bahwa ketika terjadi peningkatan pada PDRB Industri, khususnya nilai produksi industri menegah akan meningkatkan Pendapatan Asli Daerah (PAD) Kota Surabaya.
3. Nilai Produksi Industri Besar berpengaruh positif signifikan terhadap Pendapatan Asli Daerah (PAD). Hal ini menunjukkan bahwa ketika terjadi peningkatan pada PDRB Industri, khususnya nilai produksi industri besar akan meningkatkan Pendapatan Asli Daerah (PAD) Kota Surabaya
Robust Multiple Signal Classification via Probability Measure Transformation
In this paper, we introduce a new framework for robust multiple signal
classification (MUSIC). The proposed framework, called robust
measure-transformed (MT) MUSIC, is based on applying a transform to the
probability distribution of the received signals, i.e., transformation of the
probability measure defined on the observation space. In robust MT-MUSIC, the
sample covariance is replaced by the empirical MT-covariance. By judicious
choice of the transform we show that: 1) the resulting empirical MT-covariance
is B-robust, with bounded influence function that takes negligible values for
large norm outliers, and 2) under the assumption of spherically contoured noise
distribution, the noise subspace can be determined from the eigendecomposition
of the MT-covariance. Furthermore, we derive a new robust measure-transformed
minimum description length (MDL) criterion for estimating the number of
signals, and extend the MT-MUSIC framework to the case of coherent signals. The
proposed approach is illustrated in simulation examples that show its
advantages as compared to other robust MUSIC and MDL generalizations
On Measure Transformed Canonical Correlation Analysis
In this paper linear canonical correlation analysis (LCCA) is generalized by
applying a structured transform to the joint probability distribution of the
considered pair of random vectors, i.e., a transformation of the joint
probability measure defined on their joint observation space. This framework,
called measure transformed canonical correlation analysis (MTCCA), applies LCCA
to the data after transformation of the joint probability measure. We show that
judicious choice of the transform leads to a modified canonical correlation
analysis, which, in contrast to LCCA, is capable of detecting non-linear
relationships between the considered pair of random vectors. Unlike kernel
canonical correlation analysis, where the transformation is applied to the
random vectors, in MTCCA the transformation is applied to their joint
probability distribution. This results in performance advantages and reduced
implementation complexity. The proposed approach is illustrated for graphical
model selection in simulated data having non-linear dependencies, and for
measuring long-term associations between companies traded in the NASDAQ and
NYSE stock markets
A SYSTEMIC FUNCTIONAL ANALYSIS ON JAVANESE POLITENESS: TAKING SPEECH LEVEL INTO MOOD STRUCTURE
Speech level is an important aspect in Javanese grammar. It is just like, among others, tenses in English.
Thus, the involvement of speech level in any study of Javanese grammar is highly necessary. On the other
hand, speech level must also be studied the grammatical point of view. So far, however, there are very
limited numbers—if any does really exist—of grammatical study on Javanese speech level. Most major
studies on Javanese speech level are of sociolinguistics, lexical taxonomy or grouping, and prescriptive
analysis. It is probably due to the idea of speech level as merely a social phenomenon has been taken for
granted. Therefore, taking the speech level system into a grammatical analysis seems hardly possible. It
is assumed that the seemingly impossible attempt comes only to the formal approach of the grammar
study tradition for it has neglected the social aspect. Hence, it is necessary to look for an alternative
grammatical approach which is able to cope with the speech level both grammatically and socially. A
particular approach of grammar which involves social context is systemic functional grammar (SFG).
SFG proposes that language has three kinds of functional component. One of them is the interpersonal
function. This function sees language as an interaction between addresser and addressee—language is
used for enacting participants‘ roles and relation among them. The interpersonal function is expressed
through a particular grammatical structure, namely mood structure. This article is going present a
demonstration of systemic functional analysis on Javanese speech level by taking it into the mood
structure analysis. In addition, this paper aims for two kinds of potential significance. First, it could be
an adequate description of Javanese speech level grammaticalization. Second, it can be a typological
supplement for SFG in dealing with languages which apply a speech level system
Foundational principles for large scale inference: Illustrations through correlation mining
When can reliable inference be drawn in the "Big Data" context? This paper
presents a framework for answering this fundamental question in the context of
correlation mining, with implications for general large scale inference. In
large scale data applications like genomics, connectomics, and eco-informatics
the dataset is often variable-rich but sample-starved: a regime where the
number of acquired samples (statistical replicates) is far fewer than the
number of observed variables (genes, neurons, voxels, or chemical
constituents). Much of recent work has focused on understanding the
computational complexity of proposed methods for "Big Data." Sample complexity
however has received relatively less attention, especially in the setting when
the sample size is fixed, and the dimension grows without bound. To
address this gap, we develop a unified statistical framework that explicitly
quantifies the sample complexity of various inferential tasks. Sampling regimes
can be divided into several categories: 1) the classical asymptotic regime
where the variable dimension is fixed and the sample size goes to infinity; 2)
the mixed asymptotic regime where both variable dimension and sample size go to
infinity at comparable rates; 3) the purely high dimensional asymptotic regime
where the variable dimension goes to infinity and the sample size is fixed.
Each regime has its niche but only the latter regime applies to exa-scale data
dimension. We illustrate this high dimensional framework for the problem of
correlation mining, where it is the matrix of pairwise and partial correlations
among the variables that are of interest. We demonstrate various regimes of
correlation mining based on the unifying perspective of high dimensional
learning rates and sample complexity for different structured covariance models
and different inference tasks
- …
