6,094 research outputs found
Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor
Only three processes, operant during the formation of the Solar System, are
responsible for the diversity of matter in the Solar System and are directly
responsible for planetary internal-structures, including planetocentric nuclear
fission reactors, and for dynamical processes, including and especially,
geodynamics. These processes are: (i) Low-pressure, low-temperature
condensation from solar matter in the remote reaches of the Solar System or in
the interstellar medium; (ii) High-pressure, high-temperature condensation from
solar matter associated with planetary-formation by raining out from the
interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial
volatile components from the inner portion of the Solar System by super-intense
solar wind associated with T-Tauri phase mass-ejections, presumably during the
thermonuclear ignition of the Sun. As described herein, these processes lead
logically, in a causally related manner, to a coherent vision of planetary
formation with profound implications including, but not limited to, (a) Earth
formation as a giant gaseous Jupiter-like planet with vast amounts of stored
energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal
of approximately 300 Earth-masses of primordial gases from the Earth, which
began Earth's decompression process, making available the stored energy of
protoplanetary compression for driving geodynamic processes, which I have
described by the new whole-Earth decompression dynamics and which is
responsible for emplacing heat at the mantle-crust-interface at the base of the
crust through the process I have described, called mantle decompression
thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable
of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets
entitled Neutrino Geophysics Added final corrections for publicatio
The laboratory telerobotic manipulator program
New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research
Geoantineutrino Spectrum, 3He/4He-ratio Distribution in the Earth's Interior and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth's Core
The description problem of geoantineutrino spectrum and reactor antineutrino
experimental spectrum in KamLAND, which takes place for antineutrino energy
\~2.8 MeV, and also the experimental results of the interaction of uranium
dioxide and carbide with iron-nickel and silicaalumina melts at high pressure
(5-10 GP?) and temperature (1600-2200C) have motivated us to consider the
possible consequences of the assumption made by V.Anisichkin and coauthors that
there is an actinid shell on boundary of liquid and solid phases of the Earth's
core. We have shown that the activation of a natural nuclear reactor operating
as the solitary waves of nuclear burning in 238U- and/or 232Th-medium (in
particular, the neutron- fission progressive wave of Feoktistov and/or
Teller-Ishikawa-Wood) can be such a physical consequence. The simplified model
of the kinetics of accumulation and burnup in U-Pu fuel cycle of Feoktistov is
developed. The results of the numerical simulation of neutron-fission wave in
two-phase UO2/Fe medium on a surface of the Earth's solid core are presented.
The georeactor model of 3He origin and the 3He/4He-ratio distribution in the
Earth's interior is offered. It is shown that the 3He/4He ratio distribution
can be the natural quantitative criterion of georeactor thermal power. On the
basis of O'Nions-Evensen-Hamilton geochemical model of mantle differentiation
and the crust growth supplied by actinid shell on the boundary of liquid and
solid phases of the Earth's core as a nuclear energy source (georeactor with
power of 30 TW), the tentative estimation of geoantineutrino intensity and
geoantineutrino spectrum on the Earth surface are given.Comment: 28 pages, 12 figures. Added text, formulas, figures and references.
Corrected equations. Changed content of some section
Heat flow of the Earth and resonant capture of solar 57-Fe axions
In a very conservative approach, supposing that total heat flow of the Earth
is exclusively due to resonant capture inside the Earth of axions, emitted by
57-Fe nuclei on Sun, we obtain limit on mass of hadronic axion: m_a<1.8 keV.
Taking into account release of heat from decays of 40-K, 232-Th, 238-U inside
the Earth, this estimation could be improved to the value: m_a<1.6 keV. Both
the values are less restrictive than limits set in devoted experiments to
search for 57-Fe axions (m_a<216-745 eV), but are much better than limits
obtained in experiments with 83-Kr (m_a<5.5 keV) and 7-Li (m_a<13.9-32 keV).Comment: 8 page
Particulate polycyclic aromatic hydrocarbon spatial variability and aging in Mexico City
International audienceAs part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del PetrĂłleo (T0 supersite) located near downtown averaged 50 ng m?3, and aerosol active surface area averaged 80 mm2 m?3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH-to-black carbon mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8?30 times higher than that found in other cities. Ratios also indicate that primary combustion particles are rapidly coated by secondary aerosol in Mexico City. If so, the lifetime of PAHs may be prolonged if the coating protects them against photodegradation or heterogeneous reactions
A geoneutrino experiment at Homestake
A significant fraction of the 44TW of heat dissipation from the Earth's
interior is believed to originate from the decays of terrestrial uranium and
thorium. The only estimates of this radiogenic heat, which is the driving force
for mantle convection, come from Earth models based on meteorites, and have
large systematic errors. The detection of electron antineutrinos produced by
these uranium and thorium decays would allow a more direct measure of the total
uranium and thorium content, and hence radiogenic heat production in the Earth.
We discuss the prospect of building an electron antineutrino detector
approximately 700m^3 in size in the Homestake mine at the 4850' level. This
would allow us to make a measurement of the total uranium and thorium content
with a statistical error less than the systematic error from our current
knowledge of neutrino oscillation parameters. It would also allow us to test
the hypothesis of a naturally occurring nuclear reactor at the center of the
Earth.Comment: proceedings for Neutrino Sciences 2005, submitted to Earth, Moon, and
Planet
Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet
Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55 in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 ÎĽg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNÎł) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized by a single biomarker in our study, but by a composite of inflammatory markers. Our data further suggest that GM-CSF expression by CD4+ T cells regulated by IL-23 contributes to their encephalitogenicity in our EAE model
Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City
As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC), at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite) located near downtown averaged 50 ng m<sup>&minus;3</sup>, and aerosol active surface area averaged 80 mm<sup>2</sup> m<sup>&minus;3</sup>. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NO<sub>x</sub>), and carbon dioxide, particulate PAHs are most strongly correlated with NO<sub>x</sub>. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8–30 times higher than that found in other cities. Evidence also suggests that primary combustion particles are rapidly coated by secondary aerosol in Mexico City. If so, their optical properties may change, and the lifetime of PAHs may be prolonged if the coating protects them against photodegradation or heterogeneous reactions
Recombinant human activated protein C attenuates cardiovascular and microcirculatory dysfunction in acute lung injury and septic shock
Introduction: This prospective, randomized, controlled, experimental animal study looks at the effects of recombinant human activated protein C (rhAPC) on global hemodynamics and microcirculation in ovine acute lung injury (ALI) and septic shock, resulting from smoke inhalation injury
- …