56 research outputs found

    Oncolytic immunotherapeutic virus in HCC: Can it compete with molecular therapies?

    Get PDF

    Genomics and proteomics in liver fibrosis and cirrhosis

    Get PDF
    Genomics and proteomics have become increasingly important in biomedical science in the past decade, as they provide an opportunity for hypothesis-free experiments that can yield major insights not previously foreseen when scientific and clinical questions are based only on hypothesis-driven approaches. Use of these tools, therefore, opens new avenues for uncovering physiological and pathological pathways. Liver fibrosis is a complex disease provoked by a range of chronic injuries to the liver, among which are viral hepatitis, (non-) alcoholic steatohepatitis and autoimmune disorders. Some chronic liver patients will never develop fibrosis or cirrhosis, whereas others rapidly progress towards cirrhosis in a few years. This variety can be caused by disease-related factors (for example, viral genotype) or host-factors (genetic/epigenetic). It is vital to establish accurate tools to identify those patients at highest risk for disease severity or progression in order to determine who are in need of immediate therapies. Moreover, there is an urgent imperative to identify non-invasive markers that can accurately distinguish mild and intermediate stages of fibrosis. Ideally, biomarkers can be used to predict disease progression and treatment response, but these studies will take many years due to the requirement for lengthy follow-up periods to assess outcomes. Current genomic and proteomic research provides many candidate biomarkers, but independent validation of these biomarkers is lacking, and reproducibility is still a key concern. Thus, great opportunities and challenges lie ahead in the field of genomics and proteomics, which, if successful, could transform the diagnosis and treatment of chronic fibrosing liver diseases

    The concept of rebalanced hemostasis in patients with liver disease:Communication from the ISTH SSC working group on hemostatic management of patients with liver disease

    Get PDF
    Patients with liver diseases acquire complex alterations in their hemostatic system that may lead to abnormalities in routine diagnostic test of hemostasis. Thrombocytopenia, prolongations in the prothrombin time and activated partial thromboplastin time, and decreased plasma fibrinogen are common in patients with advanced liver disease. Historically, liver diseases therefore have been classified as an acquired bleeding disorder. Laboratory and clinical observations have demonstrated that although routine diagnostic tests of hemostasis suggest a hypocoagulable state, patients with liver disease also tend to develop thrombotic events. Overall, patients have commensurate changes in both pro- and antihemostatic pathways. This new hemostatic balance, however, appears much more fragile than the hemostatic balance in individuals with normal liver function, and patients with liver disease can readily experience both hemostasis-related bleeding and thrombotic events. These insights into the hemostatic balance in patients with liver disease have led to revised recommendations for clinical management of hemostasis. In 2020, an SSC working group within the ISTH has been founded with the aim to disseminate new concepts on prevention and treatment of bleeding and thrombosis in patients with liver disease. The current document will outline the hemostatic changes in patients with liver disease, the limitations of routine diagnostic tests of hemostasis, and the concept of rebalanced hemostasis

    Periprocedural management of abnormal coagulation parameters and thrombocytopenia in patients with cirrhosis:Guidance from the SSC of the ISTH

    Get PDF
    Prolonged prothrombin time and thrombocytopenia are common in patients with cirrhosis. These parameters do not reflect the overall hemostatic rebalance or bleeding risk in the periprocedural setting; however, attempts to correct these parameters remain frequent. We review the literature on periprocedural bleeding risk, bleeding risk factors, and the risk and benefits of hemostatic interventions in patients with cirrhosis. We provide guidance recommendations on evaluating bleeding risk in this patient group and management of hemostatic abnormalities in the periprocedural setting

    The portal vein in patients with cirrhosis is not an excessively inflammatory or hypercoagulable vascular bed, a prospective cohort study

    Get PDF
    Background A hypercoagulable state is not associated with development of portal vein thrombosis in cirrhosis, as we previously demonstrated. However, some groups demonstrated elevated levels of inflammatory markers and activation of hemostasis in the portal vein (PV) compared to posthepatic veins, but because the liver is involved in clearance of these markers, we hypothesize that interpretation of these data is not straightforward. Aim To determine whether the PV has particular proinflammatory/hypercoagulable characteristics by comparing plasma sampled in the PV, hepatic vein (HV), and the systemic circulation. Methods Plasma samples from 51 cirrhotic patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt placement, were taken from the PV, HV, and jugular vein (JV). Markers of inflammation (lipopolysaccharide, tumor necrosis factor-alpha, interleukin-6, thiobarbituric acid-reactive substances), neutrophil-extracellular-traps (cfDNA, MPO-DNA), endothelial damage (von Willebrand factor [VWF]), and hemostasis were determined and compared among the three vascular beds. Results Markers of inflammation were slightly, but significantly higher in the PV than in the HV and systemic circulation. VWF and markers of hemostasis were modestly elevated in the PV. Levels of multiple markers were lower in the HV compared with the PV and systemic circulation. Higher model for end-stage liver disease score was associated with a more prothrombotic state in all three sample sites. Conclusion In contrast to published studies, we did not detect a clear proinflammatory or prothrombotic environment in the PV of cirrhotic patients. Many markers are lowest in the HV, indicating that the low levels of these markers in the HV, at least in part, reflect clearance of those markers in the liver

    Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis

    Get PDF
    Short-chain fatty acids (SCFAs) are gut microbiota-derived products that participate in maintaining the gut barrier integrity and host's immune response. We hypothesize that reduced SCFA levels are associated with systemic inflammation, endotoxemia, and more severe hemodynamic alterations in cirrhosis. Patients with cirrhosis referred for a hepatic venous pressure gradient (HVPG) measurement (n = 62) or a transjugular intrahepatic portosystemic shunt placement (n = 12) were included. SCFAs were measured in portal (when available), hepatic, and peripheral blood samples by GC-MS. Serum endotoxins, proinflammatory cytokines, and NO levels were quantified. SCFA levels were significantly higher in portal vs. hepatic and peripheral blood. There were inverse relationships between SCFAs and the severity of disease. SCFAs (mainly butyric acid) inversely correlated with the model for end-stage liver disease score and were further reduced in patients with history of ascites, hepatic encephalopathy, and spontaneous bacterial peritonitis. There was an inverse relationship between butyric acid and HVPG values. SCFAs were directly related with systemic vascular resistance and inversely with cardiac index. Butyric acid inversely correlated with inflammatory markers and serum endotoxin. A global reduction in the blood levels of SCFA in patients with cirrhosis is associated with a more advanced liver disease, suggesting its contribution to disease progression.-Juanola, O., Ferrusquía-Acosta, J., García-Villalba, R., Zapater, P., Magaz, M., Marín, A., Olivas, P., Baiges, A., Bellot, P., Turon, F., Hernández-Gea, V., González-Navajas, J. M., Tomás-Barberán, F. A., García-Pagán, J. C., Francés, R. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis

    Complement and coagulation cascades activation is the main pathophysiological pathway in early-onset severe preeclampsia revealed by maternal proteomics

    Get PDF
    Preeclampsia is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal morbidity and mortality. The exact pathogenesis of this multifactorial disease remains poorly defined. We applied proteomics analysis on maternal blood samples collected from 14 singleton pregnancies with early-onset severe preeclampsia and 6 uncomplicated pregnancies to investigate the pathophysiological pathways involved in this specific subgroup of preeclampsia. Maternal blood was drawn at diagnosis for cases and at matched gestational age for controls. LC-MS/MS proteomics analysis was conducted, and data were analyzed by multivariate and univariate statistical approaches with the identification of differential pathways by exploring the global human protein-protein interaction network. The unsupervised multivariate analysis (the principal component analysis) showed a clear difference between preeclamptic and uncomplicated pregnancies. The supervised multivariate analysis using orthogonal partial least square discriminant analysis resulted in a model with goodness of fit (R2X = 0.99, p < 0.001) and a strong predictive ability (Q2Y = 0.8, p < 0.001). By univariate analysis, we found 17 proteins statistically different after 5% FDR correction (q-value < 0.05). Pathway enrichment analysis revealed 5 significantly enriched pathways whereby the activation of the complement and coagulation cascades was on top (p = 3.17e-07). To validate these results, we assessed the deposits of C5b-9 complement complex and on endothelial cells that were exposed to activated plasma from an independent set of 4 cases of early-onset severe preeclampsia and 4 uncomplicated pregnancies. C5b-9 and Von Willbrand factor deposits were significantly higher in early-onset severe preeclampsia. Future studies are warranted to investigate potential therapeutic targets for early-onset severe preeclampsia within the complement and coagulation pathway

    Immune responses and clinical outcomes after COVID-19 vaccination in patients with liver disease and liver transplant recipients

    Get PDF
    Background &amp; Aims: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. Methods: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). Results: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p &lt;0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. Conclusion: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease. Impact and implications: Standardised assessments of the immune response to different COVID-19 vaccines in patients with liver disease are lacking. We performed antibody and T-cell assays at multiple timepoints following up to three vaccine doses in a large cohort of patients with a range of liver conditions. Overall, the three most widely available vaccine platforms were immunogenic and appeared to protect against severe breakthrough COVID-19. This will provide reassurance to patients with chronic liver disease who were deemed at high risk of severe COVID-19 during the pre-vaccination era, however, liver transplant recipients had the lowest antibody titres and remained vulnerable to severe breakthrough infection. We also characterise the immune response to multiple SARS-CoV-2 variants and describe the interaction between disease type, severity, and vaccine platform. These insights may prove useful in the event of future viral infections which also require rapid vaccine development and delivery to patients with liver disease.</p

    Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis

    Full text link
    Background & Aims: Spontaneous portosystemic shunts (SPSS) frequently develop in liver cirrhosis. Recent data suggested that the presence of a single large SPSS is associated with complications, especially overt hepatic encephalopathy (oHE). However, the presence of &gt;1 SPSS is common. This study evaluates the impact of total cross-sectional SPSS area (TSA) on outcomes in patients with liver cirrhosis. Methods: In this retrospective international multicentric study, CT scans of 908 cirrhotic patients with SPSS were evaluated for TSA. Clinical and laboratory data were recorded. Each detected SPSS radius was measured and TSA calculated. One-year survival was the primary endpoint and acute decompensation (oHE, variceal bleeding, ascites) was the secondary endpoint. Results: A total of 301 patients (169 male) were included in the training cohort. Thirty percent of all patients presented with &gt;1 SPSS. A TSA cut-off of 83 mm2 was used to classify patients with small or large TSA (S-/L-TSA). Patients with L-TSA presented with higher model for end-stage liver disease score (11 vs. 14) and more commonly had a history of oHE (12% vs. 21%, p &lt;0.05). During follow-up, patients with L-TSA experienced more oHE episodes (33% vs. 47%, p &lt;0.05) and had lower 1-year survival than those with S-TSA (84% vs. 69%, p &lt;0.001). Multivariate analysis identified L-TSA (hazard ratio 1.66; 95% CI 1.02–2.70, p &lt;0.05) as an independent predictor of mortality. An independent multicentric validation cohort of 607 patients confirmed that patients with L-TSA had lower 1-year survival (77% vs. 64%, p &lt;0.001) and more oHE development (35% vs. 49%, p &lt;0.001) than those with S-TSA. Conclusion: This study suggests that TSA &gt;83 mm2 increases the risk for oHE and mortality in patients with cirrhosis. Our results support the clinical use of TSA/SPSS for risk stratification and decision-making in the management of patients with cirrhosis. Lay summary: The prevalence of spontaneous portosystemic shunts (SPSS) is higher in patients with more advanced chronic liver disease. The presence of more than 1 SPSS is common in advanced chronic liver disease and is associated with the development of hepatic encephalopathy. This study shows that total cross-sectional SPSS area (rather than diameter of the single largest SPSS) predicts survival in patients with advanced chronic liver disease. Our results support the clinical use of total cross-sectional SPSS area for risk stratification and decision-making in the management of SPSS.Jonel Trebicka is supported by grants from the Deutsche Forschungsgemeinschaft (SFB TRR57, CRC1382), Cellex Foundation and European Union’s Horizon 2020 research and innovation program GALAXY study (No. 668031), LIVERHOPE (No. 731875) and MICROB-PREDICT (No. 825694) and the Cellex Foundation. Joan Genescà is a recipient of a Research Intensification grant from Instituto de Salud Carlos III, Spain. The study was partially funded by grants PI15/00066, and PI18/00947 from Instituto de Salud Carlos III and co-funded by European Union (ERDF/ESF, “Investing in your future”). Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivasis supported by Instituto de Salud Carlos III. Macarena Simón-Talero is a recipient of the grant JR 17/00029 from Instituto de Salud Carlos II

    Immune responses and clinical outcomes after COVID-19 vaccination in patients with liver disease and liver transplant recipients

    Get PDF
    Background &amp; Aims: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. Methods: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). Results: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p &lt;0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. Conclusion: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease
    corecore