26,515 research outputs found

    A discrete linearizability test based on multiscale analysis

    Get PDF
    In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A_1, A_2 and A_3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A_3 C-integrability conditions can be linearized by a Mobius transformation

    The ontology of temperature in nonequilibrium systems

    Get PDF
    The laws of thermodynamics provide a clear concept of the temperature for an equilibrium system in the continuum limit. Meanwhile, the equipartition theorem allows one to make a connection between the ensemble average of the kinetic energy and the uniform temperature. When a system or its environment is far from equilibrium, however, such an association does not necessarily apply. In small systems, the regression hypothesis may not even apply. Herein, we show that in small nonequilibrium systems, the regression hypothesis still holds though with a generalized definition of the temperature. The latter must now be defined for each such manifestation.Comment: J.Chem.Phys. (in press); 23 pages, 3 figures, 1 tabl

    The projection of a nonlocal mechanical system onto the irreversible generalized Langevin equation, II: Numerical simulations

    Get PDF
    The irreversible generalized Langevin equation (iGLE) contains a nonstationary friction kernel that in certain limits reduces to the GLE with space-dependent friction. For more general forms of the friction kernel, the iGLE was previously shown to be the projection of a mechanical system with a time-dependent Hamiltonian. [R. Hernandez, J. Chem. Phys. 110, 7701 (1999)] In the present work, the corresponding open Hamiltonian system is further explored. Numerical simulations of this mechanical system illustrate that the time dependence of the observed total energy and the correlations of the solvent force are in precise agreement with the projected iGLE.Comment: 8 pages, 9 figures, submitted to J. Chem. Phy

    Magneto-optical imaging of magnetic deflagration in Mn12-Acetate

    Get PDF
    For the first time, the morphology and dynamics of spin avalanches in Mn12-Acetate crystals using magneto-optical imaging has been explored. We observe an inhomogeneous relaxation of the magnetization, the spins reversing first at one edge of the crystal and a few milliseconds later at the other end. Our data fit well with the theory of magnetic deflagration, demonstrating that very slow deflagration rates can be obtained, which makes new types of experiments possible.Comment: 5 two-column pages, 3 figures, EPL styl

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    On the Integrability of the Discrete Nonlinear Schroedinger Equation

    Full text link
    In this letter we present an analytic evidence of the non-integrability of the discrete nonlinear Schroedinger equation, a well-known discrete evolution equation which has been obtained in various contexts of physics and biology. We use a reductive perturbation technique to show an obstruction to its integrability.Comment: 4 pages, accepted in EP
    corecore