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Abstract

We apply the discrete multiscale expansion to the Lax pairtarthe first few symmetries

of the lattice potential Korteweg-de Vries equation. Frdrase calculations we show that,
like the lowest order secularity conditions give a nonling@ehrodinger equation, the Lax pair
gives at the same order the Zakharov and Shabat spectrdépr@nd the symmetries the
hierarchy of point and generalized symmetries of the nealirschrodinger equation.

1 Introduction

Reductive perturbation techniques [19, 20] have provedetimtportant tools for finding approxi-
mate solutions of many physical problems, by reducing agnanlinear partial differential equa-
tion to a simpler equation, often integrable [3], and foryimg integrability [3—-5,10,21]. Recently,
after various attempts to carry over this approach to galifference equations [1,11,13] we have
presented a procedure for carrying out a multiscale exparsi the lattice [7,12,14] which seems
to preserve the integrability properties [8]. To get a braitederstanding of the application of the
reductive perturbation technique on difference equatiafter an introduction in Section 2 on
multiscale expansions on the lattice potential KdV equeflpKdV), we discuss in Section 3 its
application to the spectral operator, as was done by Zaktard Kuznetsov in their pioneering
work in 1986 [21] for the KdV equation. Later on we apply, ircBen 4, the multiscale expansion
to the symmetries of the IpKdV [15]. Section 5 is devoted tew €onclusive remarks.
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2 Multiscale expansion on the lattice

The aim of this Section is to give a terse survey on the maligsenalysis on the lattice and its
application to the reduction of the IpKdV. We refer to [7, 12] for further details.

2.1 Shift operators defined on the lattice

Let u, : Z — R be a function defined on a lattice of index Z. One can always extend it to a
functionu(x) : R — R by defining a real continuous variable= noy, whereoy € R is the constant
lattice spacing.

An equation defined on the lattice is a functional relatiotmieen the functioml, and its shifted
valuesun+1, Uns2, €tc, expressed in terms of a shift operdfpsuch thaflyu, = un 1.

For the continuous function(x) we can introduce an operat®y, such thaffu(x) = u(x+ 0x).
The Taylor expansion af(x+ ox) centered irx reads

00

Tu(X) = _;?—E‘u(i) (x), (2.1)

whereul) (x) = d'u(x) /d¥ = diu(x), with dy the total derivative. Eq. (2.1) suggests the following
formal expansion for the differential operafty:

(o]

XdX — i

Introducing a formal derivative with respect to the indesayd,, we can define, by analogy with
Ty, the operatofl,, as

© s
o !
The formal expansion (2.2) can be inverted, yielding
< (=Dt
1=

wherelA, = T, — 1 is the discrete right difference operator w.r.t. the \aaa (i.e. Anup = Up g —
Un).

Following [12, 14] we say that, is aslow-varying function of ordef iff A%tu, = 0. Hence
the &, operators are formal series containing infinite powerd,gfbut, acting on slow-varying
functions of order, they reduce to polynomials i, of order at most.

2.2 Dilations on the lattice

Let us introduce a second lattice, obtained from the first lojlagion. Forx € R we can visu-
alize the problem as a change of variable betweandx; = €x, 0 < € < 1. On the lattice this
corresponds to a change from the ingex x/oy to the new indexn; = x1/0y,, whereoy, is the
new lattice spacing. Assuming thay, > oy we can seby = €0y,, 0 < € < 1, so thain; = gen.
As n,n; € Z, €€ is a rational number and one can define in all generabity- M1/N < 1 with
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M1,N € N. However, if we want the lattice of indax to be a sublattice of the lattice of index
we have also to require thist; /N = 1/M with M € N.
The relation between the discrete derivatives defined itvibdattices is given by [7,9, 13, 14]

Abun = j! z 'JA' U, (2.4)

The coefficients? j read

i Mlk .
ri=3 () stk

k=]

wheresik andGlj( are the Stirling numbers of the first and second kind resgedgti

If u, is a function of infinite order of slow-varyness, &= «, then Eq. (2.4) implies that
a finite difference in the discrete variabledepends on an infinite number of differences on the
variablen;.

2.3 Discrete multiscale expansion

Let us now consideu, = uyy, as a function depending on a fast inde&and a slow indexy =
n(M1/N). At the continuous level, the total derivatidgacting on functionsi(x; x; ) is the sum of
partial derivatives, i.edy = 0+ €0x,. AS

T = €% — PO, (25)
we can write the total shift operatdy as

T, = ePeMi/N3y _ ‘T(Ml/N)’ (2.6)
where the partial shift operators,, 7,,, defined byZnunn, = Uny1n, and Ty, Unn, = Unn,+1, are
given by

T = < 3 M) _ Ml/N
= —, = n )
i;) I Zﬁ '

anddy, is given by Eq. (2.3) witm substituted by .

Eqg. (2.5) can be extended to the cas&aflow variables = gix, 1< i <K . Then the action
of the shift operatoil, on a functionun;{ni}iK:1 depending on both fast and slow variables can be
written in terms of the partial shifts,, 7, as

K
(&n;)
T = 20 17, 2.7)
n nil:l

where thee,’s are suitable functions afande depending parametrically on some integer coeffi-
cientsM; e N, 1 <i <K.

To carry out the multiscale expansion of the fields appeanngartial difference equations
with two independent discrete variables, one has to contlideaction of the operator (2.7) on a
function depending on two fast indicagndm, and on a set df,, + Ky, slow variableg{n; }iK:"1 and
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{rr‘q}iK:’“1 (we shall use the notatiauhm;{ni}_Knb{m}_Kml for such functions). Notice that in principle it
is possible to considef,, = Ky, = oo, We assume a common definition of the small parameter
for both discrete variablasandm but we denote witlM; the integers for the slow variablesand
with M; the ones fom,. We have:

M; . )

Hereafter we shall assunig, = 1 andK,, = K.

2.4 Multiscale expansion of the lattice potential KdV equabn
The IpKdV is given by [17]:
M(TaTm— 1) +4(Ta— Tm)Junm — (Th — Tm)Unm(Tn Tm — L)Unm = O, (2.8)

wherep= p—qand{ = p+q, andp, g, p+# g, are two real parameters. The linear part of Eq. (2.8)
has a travelling wave solution of the form , = exp{ijkn— w(k)m|} with

(+n K>
w(K) = —2arctan| ——tan— |. 2.9
(K) s (2.9)
According to [7] the multiscale expansion of Eg. (2.8) isfpened taking into account that
o1 ; _
tam= 3 3 et (n, {mfy)etren, g =™, (2.10)
aeZ k=1

The following statement, proved in [7], provides the muakie expansion of the IpKdV (2.8)
at the lowest orders of/N.

Theorem 1. The multiscale expansion of Eq. (2.8) gives the followirsgilts:
1. 0(1/N):

e o = 0: the equation is identically satisfied.

e 0 = 1. one gets a linear equation identically satisfied by takintpiaccount the dis-
persion relation (2.9).

e |a| > 2: one gets a linear equation whose only solution(ll@ &= 0.
2. 0(1/N?):

e 0 = 1: one gets a linear equation whose solution is

uV =u (e (m3,), m=mEm, (2.12)
provided that

Z2 _ p_2
ek — ¢’
Here S=rexp(iB), with r > 0 and 8 = —arctarj({sink)/({ cosk — p)], assures that
M1 andM; are positive integers.

M]_::FS(H—ZGiK), M]_:SéK
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e 0 =0: one gets

2(1+6€%)?
Se¢(u+¢) (M—Cev)’

6n2u(10> :rlyu(f)\z, =+

where §” = uf” (np, {m },).
e 0 = 2. one gets

> 1+6€X

2 _ (1) _
I e e )

u;

where Lf) = ugz)(ng, {m},).
3. 0(1/N3):
e o = 1: one gets the following (defocusing) dNLS:
Bl = pa&2 Ul + pout” UiV |2, (2.12)
where

Ulr? (2% — ) sink _ 8CM(C — W) (1 + cosk)?sink
Mg (22 4 2 — 2Cucosk)’ 7 Ma(ut Q) (2 + 12— 20pcosk)?

p1=—

e 0 =0: one gets
6n2u(20> _1 (u(ll) u%21) n G<11) ug)) 1 (l]gl)énzu(ll) _ u(11)6n26<11>> 7

with
2isink

T3= ——r
3 u+z7

where §” = U (ng, {m }<5) and ) = 5V (ng, {m 1<),
e 0 = 2. Oone gets

@ _ - W (D (D | 2Sé(a+Be")
Uy =Taly’ (On,Uy ") + 2T2U; U, 7, T4_i(eiK—1)2(p+Z)’

where ng) = uff)(ng, {m},).

We have given above just those results necessary to getratdisonlinear Schrodinger equa-
tion (ANLS) as a secularity condition and its symmetries.
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3 Multiscale expansion of the IpKdV spectral problem

As shown in [14] there are many forms for the linear problessoaiated with the IpKdV. The
first to be introduced [17] is given by first ordex2 matrix difference equations. Later on [14] it
was shown that the matrix Lax pair could be easily reducedsttasar non-symmetric difference
equation of second order, used by Boiti et. al. [2] to integyem alternative form of the equations of
the Volterra hierarchy. In [15] it was moreover shown thatbiura transformation it is possible
to associate the IpKdV with the Toda spectral problem inioedl by Manakov and Flaskha [6]
when the fieldb,(t) = 0.

One could start from any of the three linear problems delinetie previous paragraph to do
the multiscale expansion. However we choose as startirgraperoblem the one whose second
derivative is expressed in a symmetric form, i.e. the diecBehrodinger spectral problem used to
integrate the Toda and Volterra equations.

The n-evolution equation of the (scalar) spectral problem oflgidV (2.8) may be written
as [15]:

Ph-1+ @nPhi1 = M, (3.1)
with
4p?

2p— (T2 4+ Unm] [2P— (T + T Hunm]
Herep € C is the spectral parameter.

Our aim is now to perform the multiscale expansion of Eq.)(&lorder to get the corre-
sponding evolution equation of the spectral problem of tHe®l (2.12). We refer to [21] for the
continuous counterpart of this analysis.

To expand Eq. (3.1) we consider the development (2.10) &ofighd u, m, with the restriction
(2.11), while the functiorg, will be expanded according to the formula:

an:

o1 o (KN _
®=3 3 SR (ne, (mfp)getnam/2, o =g (3.2)
o oddk=0

At order 0(1), the multiscale analysis of Eq. (3.1) suggests the follgnéspansion for the
spectral parameter

p:ZCos(;) +k21$. (3.3)

Taking into account Eq. (3.3) we proceed to the ord@ Df the multiscale expansion of
Eq. (3.1). We have:

2ul! K I 1
St + =L cod ()Y = -2 @V 3.4
fora = 1. The corresponding equation fme= —1 is given by performing the complex conjugation

of Eq. (3.4). The coefficients of the higher harmonics in BoR) can be written in terms cqf)”.
For instance, foo = 3, we have:

3 K4ek ) 1
P g,
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By a proper rescaling crbgl) andy Eq. (3.4) is equivalent to the standard Zakharov-Shabat
spectral problem of the integrable NLS [18].

4 Multiscale expansion of the first two generalized symmetéds

Lie symmetries of a lattice equati@ un m, T Unm, T Unm, - - -) = O are given by those continuous
transformations which leave the equation invariant. Hﬁ#éjmm = Untkm andTrﬁ"umm = Un mdk,

k € N. From the infinitesimal point of view they are obtained byuigiag the infinitesimal invari-
ant condition

pPr¥omD| =0, (4.1)
where

Xom = Fam(Unms T Unm, T Unm, - )0y, - (4.2)
By pr)?mm we mean the prolongation of the infinitesimal generéﬁ,% to all points appearing in

D=0.
If Fym = Fnm(unm) then we gepoint symmetrieand the procedure to get them from Eq. (4.1)

is purely algorithmic [16]Generalized symmetriese obtained wheRnm= Fnm(Unm, T;:-Unm, Tz Unm, - - -)-

In the case of nonlinear discrete equations, the Lie poimirsgtries are not very common, but, if
the equation is integrable and there exists a Lax pair, ib&sible to construct an infinite family
of generalized symmetries.

In correspondence with the infinitesimal generator (4.2camin principle construct a group
transformation by integrating the initial boundary prahle

dunm(A)
dA

whereA € R is the continuous Lie group parameter. This can be donet®iéc only in the
case of point symmetries, as in the generalized case we hdifeeential-difference equation
for which we cannot find the solution for a generic initial aabut, at most, we can find some
particular solutions. Eg. (4.1) is equivalent to the regidbat theA-derivative of the equation
D = 0, written for Gy m(A), is identically satisfied when the-evolution of U, m(A) is given by
Eq. (4.3). This is also equivalent to say that the flows (indh@up parameter space) given by
Eq. (4.3) are compatible or commute with= 0.

In [15] one can find an infinite hierarchy of integrable geheeal symmetries for the IpKdV
(2.8) constructed by looking at the isospectral defornmatiof the Lax pair. The first two symme-
tries of this hierarchy are given by

= Fn.m(ﬁn,m(}\)yTniﬁn.m()\)yTnquGn,m()\)a o) Unm(A =0) = Un,m, (4.3)

At 1 1
m_ _ = 4.4

d\  2pt (T —To)unm 2P (4.4)
dinm 1 1 1 L s

— — + — - .
d)\ [2p+ (Tn_ - Tn)un,m]z 2p+ (1_ Tnz)un,m 2p+ (Tn72 - 1)Un,m 4p3

The constant terms appearing in the r.h.s. of Egs. (4.4eh&)re that the above flows go asymp-
totically to zero asiy n — cost.
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To perform the multiscale expansion of the generalized sgtnas (4.4,4.5) we consider the
following development for the field, m, see Eqg. (2.10):

_ > 1 P e e _
Un7m = Z Z Wuﬁq)(nz{mi}iK:27{)\i}i:0)ela(Kn (.om)’ 0’I(< @ = u:(ka)ﬂ (46)
aezZk=1

whereA; = A/N' are the slow-varying group parametansjs given by Eq. (2.11) ant, m({\i =
0}o) = Unm.
Since Eq. (2.12) involves the harmornjg,l) we are actually interested just in those equations,

arising from the multiscale expansions of the symmetrieg @5), which are written in terms this
harmonic. The following statement holds.

Theorem 2. The multiscale expansion up to ordetN* of the symmetry (4.4) gives the following
symmetries for the dNLS (2.12) (after a reparametrizatibthe group parameters):

(1)

ou/Ny: B —ia, (4.7)
()
u

N o=t @.8)
1
oY

O(LN?): S =30y, (4.9)
2
oY

(N S = pii, 0+ 3pol 28,0 (4.10)

with initial condition @ (A = 0,A; = 0,A, = 0,A5 = 0) = u\". Egs. (4.7,4.8,4.9) provide point

symmetries of Eq. (2.12), while Eq. (4.10) is a generalizedrsetry of Eq. (2.12).
Proof. The proof is done by a direct computation by taking into aotdhbe results contained in

Theorem 1.
Inserting Eq. (4.6) in the first symmetry (4.4) we get thedaiing determing equations:

ot

o/N): k= ZLpzsinK e (4.11)
oY aud i _

0(1/N?): # + Wll =57 (smKﬂél) - |M1c05|<6n20{11)) , (4.12)
o ag® o

o(N3y; %l Ot Oh (4.13)

N VI

i . 1 . 1 M2 . 1
=32 (smkﬂé ) IM1COSK5n20{2 gt 71S|m<6§2fﬁ1 >> +
+é (—iSinK sin(ZK)u:(ll)u(zz) +Mgsink 0§1>5n20§°>) +

3
g st P,

2p*
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o) ol o) o

4. _
O(IN%): —= IV VR e (4.14)
i , ). 1y M2 1
=57 <S|nKUﬁ ) —iM; cosk &, 05" +71S|m<6§2fﬁ1 )

iM3
_Tl COSK 6§20§1)> -
[ . .
+E [—lSan sin(2k) (uqll)ﬁ(f) +ﬁél>0é2>> +
+MlSinK <agl)6n20é2) + EJ{:Ll)énza(ZO) + EJ{21)6f120(10)> -
—iM2cosk 0411)6%20410)] +
3i _ .
358 [—|M1c05|<sm2|<(U{ll))zénzu:(ll)Jr
+sirfi (@ (02 + 205" [0 ) |
Let us consider Eq. (4.11); by the reparametrizafion 2p?A/sink, Eq. (4.11) is equivalent
to Eq. (4.7). This is the first point symmetry of the dNLS (3.4Rd it corresponds to a phase

symmetry.
EqQ. (4.12) has to be split into the following equations toid\szcularities:

oY My 1
o i
Y 2—p25|m<u2 . (4.16)

From Eq. (4.16) we see thﬁé1> depends o asﬂﬁl). Eqg. (4.15) provides the second point
symmetry (4.8) of the dNLS (2.12), corresponding to traimts w.r.t. the index,, after the
reparametrization; — 2p?A1/(M1 COSK).

From Eg. (4.13), taking into account Egs. (4.11,4.16) aedstitularity conditions, a straight-
forward algebra and the reparametrization— 4p?p1A2/(M2sink) leads to

o
G = e + oot 2

which leads to Eqg. (4.9) thanks to Eq. (2.12). EqQ. (4.9) mehatsthe dNLS (2.12) is invariant
under translations w.r.t. the index.
Finally, Eqg. (4.14) gives Eq. (4.10) after a long computatiwy taking into account Egs.
(4.11,4.12,4.13). Inthis last case the reparametrizatidie group parameter reais— 12p?piAs/ (M3 cosk).
[ ]
A computation up to order /N4, similar to the one just done for the symmetry (4.4), shows
that the multiscale expansion of the second generalizedngtrg (4.5) of the IpKdV (2.8) gives
the same symmetries (4.7,4.8,4.9,4.10), after suitaplgraenetrizations of the group parameters.
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5 Concluding remarks

In this paper we have considered the multiscale expansidheoSpectral problem and of the
symmetries of the partial difference integrable latticéeptial KdV equation. By a proper choice
of the spectral problem of the IpKdV we have been able to ddrivm it the spectral problem of
the reduced equation, a nonlinear Schrodinger equati@th@h did the multiscale expansion of
two generalized symmetries. A generalized symmetry pasvigs with the point and generalize
symmetries of the nonlinear Schrodinger equation. At eadbr of the multiscale approximation,
we get by reduction from the request that no secular comd#@asts, a higher order symmetry.
The same calculation for other generalized symmetries dgravide anything new. All the
information concerning the whole hierarchy of generaliggthmetries for the NLS is contained
in the first generalized symmetry for the IpKdV.
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