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Ontology of temperature in nonequilibrium systems
Alexander V. Popova� and Rigoberto Hernandezb�

Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry,
Georgia Institute of Technology, Atlanta, Georgia 30332-0400

�Received 2 November 2006; accepted 1 May 2007; published online 27 June 2007�

The laws of thermodynamics provide a clear concept of the temperature for an equilibrium system
in the continuum limit. Meanwhile, the equipartition theorem allows one to make a connection
between the ensemble average of the kinetic energy and the uniform temperature. When a system or
its environment is far from equilibrium, however, such an association does not necessarily apply. In
small systems, the regression hypothesis may not even apply. Herein, it is shown that in small
nonequilibrium systems, the regression hypothesis still holds, though with a generalized definition
of the temperature. The latter must now be defined for each such manifestation. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2743032�

I. INTRODUCTION

A lay person defines temperature as a measure of the
heat contained in a body. This is not in conflict with a more
rigorous thermodynamic definition based on the equipartition
theorem when the body is in the continuum limit with re-
spect to size and measurement time. But, what is the tem-
perature when these assumptions no longer hold? Is it useful
to even try to describe small and/or nonequilibrium sub-
systems using an instantaneous temperature?

Experimentally, at least, temperature can be defined even
for very fast and small systems using heat balances. For ex-
ample, the temperature of a medium can be changed experi-
mentally using a system excitation induced by a laser pulse
or using a microwave field to heat the bath. The temperature
in the local environment can be raised quickly by several to
tens of degrees Centigrade in a few microseconds or less.1

This elevated temperature can be sustained for milliseconds
and subsequently decays back to the global environmental
temperature within a time scale of tens of milliseconds.2

Such T-jump experiments provide the time resolution needed
for studying the kinetics of many processes—as in, e.g.,
protein- and peptide folding,1–3 and helix-coil transitions in
peptides.4–7 However, T jumps can significantly influence the
structural and dynamical properties of the systems under in-
vestigation. For example, solutions of colloidal and microgel
particles change their size dramatically due to changes in
temperature, and also pH.8–15 Indeed, such particles have
been swelled by as much as an order of magnitude in just a
few milliseconds.13,16,17 Such environmental changes evi-
dently affect the local and global structure and may enable
coupling to additional heat sinks. At the very least, they re-
quire additional care in performing the heat balance to deter-
mine the temperature during the T-jump.

In order to assign a rigorous definition of the instanta-

neous temperature of a small �open or closed� system under
nonequilibrium conditions, it is useful to partition it into a
subsystem—specifying the properties of the material—and a
bath—consisting of everything else. The latter may in turn
also be open or closed depending on whether or not it is
effectively interacting with an additional environment. When
this bath is stationary, such as can be found in simple liquids
or colloidal suspensions at equilibrium, the motion of the
subsystem—as represented by an n-dimensional position co-
ordinate q—can be accurately described by the generalized
Langevin equation �GLE�,18

q̈�t� = −
�V�q�

�q
− �

0

t

�th�t − t��q̇�t��dt� + �th�t� . �1.1�

Here, V�q� is the potential of mean force �PMF�, �th�t− t�� is
the friction kernel representing the response of the solvent,
�th�t� is the random force due to the medium, and they obey
the fluctuation-dissipation relation �FDR�,

��th�t��th�t��� = kBT�th�t − t�� . �1.2�

When the bath is nonstationary by way of exhibiting tempo-
ral �and spatial� changes in the ambient bath, Eq. �1.1� has
been modified to the so-called irreversible GLE �iGLE�,19,20

q̈�t� = −
�V�q�

�q
− �

0

t

��t,t��q̇�t��dt� + ��t� , �1.3�

��t,t�� = g�t��th�t − t��g�t�� . �1.4�

The function g�t� modulating the friction kernel is com-
pletely determined by an irreversible process due to pro-
cesses not otherwise included in the subsystem or bath. The
stochastic force ��t��g�t��th�t� in the iGLE is modulated by
the same function g�t�. The resulting nonstationary FDR is

���t���t��� = kBT��t,t�� . �1.5�

The system-bath dynamics characterized by the GLE and the
iGLE has often been generalized to allow for the possibility
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of time-dependent or driven variations in the system tem-
perature. In one set of approaches, the nonequilibrium be-
havior of the bath is introduced by way of an external sto-
chastic force. This additional noise can drive the reaction
coordinate q directly21 or by modulation of the local bath
modes.22–24 Although such a modulation may be caused by
many different physically relevant mechanisms, the recurring
requirement is that the external noise has no connection to
the memory kernel ��t , t�� in the FDR. The latter can arise,
for example, when the stochastic noise acting on the reacting
subsystem and the local bath is independent. This require-
ment necessarily leads to a shift in the temperature. Refer-
ences 21–24 have explored this issue within the Kramers
theory, and the steady state of the nonequilibrium open sub-
system was observed to lead to a new effective temperature.

However, if the system is truly in equilibrium with the
overall bath, then the heat transfer leading to this tempera-
ture differential is presumably dissipated by bath modes not
initially included in the local bath. A repartitioning of the
environment into two sets—a nonequilibrium open reservoir
and a global thermally equilibrated bath—has been
suggested.25,26 External perturbations in the initial state of
the former are relaxed to equilibrium through the coupling to
the latter. �The FDR between the random forces and the
memory kernel appears naturally in this case.� This coupling
is stipulated by a specific Hamiltonian model of the bath,
though primarily this approach has specified the bath using
the usual choice of a set of harmonic modes coupled by
bilinear interactions. Each such mode is then assumed to
approach its equilibrium value exponentially with a specified
dissipation rate. Alternatively, the heat from the nonequilib-
rium local bath may be balanced directly in the iGLE
through the ad hoc introduction of an effective heat sink,
which has indeed been seen to provide self-consistent
constant-temperature dynamics.27–29

Regardless, the requirement that the overall bath dissi-
pates the system so quickly that constant temperature is al-
ways maintained is too severe. For example, it does not de-
scribe systems in which energy transport fluctuations to
nearby local bath modes may be important. Nor does it ac-
count for �driven� temperature-ramped chemical reactions as
have earlier been treated using a simple generalization of the
iGLE.30 That approach is restricted to the case of slow tem-
perature variations as will be recapitulated in Sec. III. Thus,
the question remains as to whether a subsystem within a
nonequilibrium environment can be characterized using an
observable temperature, and if so, how to calculate or mea-
sure it.

In the current work, we investigate a generalized chemi-
cal process in which the nonequilibrium behavior of the cho-
sen subsystem is influenced by a change in temperature of
the environment that is in turn influenced by the response of
the subsystem. In such a case, the environment itself can also
persist in a nonequilibrium state. The model, therefore, con-
sists of a hierarchy of three domains: a small-dimensional
system, a nonequilibrium open “local” bath �see Fig. 1�
strongly coupled to the system, and a “global” bath that is
coupled to the local bath and at most weakly coupled to the
system. Without loss of generality, the linear response of the

local baths can be represented using an auxiliary model of
harmonic oscillators coupled bilinearly to the system. The
interaction between the local and global environments in-
duces a time dependence in the parameters characterizing the
local bath—viz., the effective masses of the oscillators, their
frequencies, and the coupling between the local bath and the
system. Assuming that the effective temperature of each bath
mode is observable, we investigate the connections between
these variables and the system. The time dependence of the
bath parameters can be specified according to the behavior of
any particular physical problem, and so this theory can be
applied quite generally as discussed above.

One important case for these problems �indeed it lies at
the core of the discussion that follows� is the possibility that
the local bath actually consists of several independent baths
�or reservoirs�. This separation can be viewed as a math-
ematical trick that enables one to demonstrate the possibility
of invariance regardless of the specific representation. But it
is also physically relevant. For example, two- and three-
temperature models have been used to describe ultrashort
laser pulse desorption experiments.31,32 Therein, the distinct
reservoirs represent the adsorbate layer, the substrate
phonons, and the substrate electrons, respectively, and the
times scales of each can be quite different.33 However, these
methods have typically been applied in an ad hoc fashion,
and the present work is an effort toward making this theoret-
ical structure clear in a general sense for cases such as this.

The GLE can be derived from a Zwanzig-type Hamil-
tonian as a projection of the simplest many-dimensional me-
chanical system.18 Within this formalism, the bath is repre-
sented as a set of harmonic oscillators coupled with a tagged
particle by bilinear interactions. In Ref. 20, this formalism
has been extended to take into account nonstationary effects
by introducing time-dependent coupling coefficients and a
nonlocal memory correction term �see Sec. II�. The projec-
tion of this system has been shown to be the iGLE with the
corresponding FDR.34 Although the form of the iGLE had
been known earlier from the thermodynamic
considerations,19 the value of this approach is that it allows
one to obtain practical stochastic equations at a low cost. For

FIG. 1. �Color online� A hierarchical representation of a �sub�system under
investigation which is immersed within a local nonequilibrium environment
that is, in turn, interacting with a global equilibrium one.
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example, the local limit of the iGLE has been seen to sur-
mise the probe dynamics in a nonstationary colloidal
suspension.35

In Sec. II we take advantage of the iGLE and its associ-
ated Hamiltonian to derive the stochastic equation for a
tagged particle moving in a complex nonequilibrium envi-
ronment consisting of the reservoirs with changing tempera-
tures. We show that this approach can serve as a common
basis to unify various methods developed separately for spe-
cific purposes in Sec. III. Moreover, a numerical gedanken
experiment looking at the dynamics of a particle coupled to
three distinct baths �that are not mutually coupled� at differ-
ent temperatures illustrates the accuracy of the nontrivial
nonequilibrium effective temperature equation derived in
Sec. II.

II. LANGEVIN DYNAMICS IN A NONEQUILIBRIUM
ENVIRONMENT

The objective of this work is the determination of the
effective temperatures of the “system” shown in Fig. 3. The
target system is directly coupled to a large number of local
reservoirs. These reservoirs are, in turn, coupled to a larger
scale environment —to wit, the global environment—that
alters its properties and interaction with the system over
much longer time scales than the reservoir relaxation times.
In principle, a detailed Hamiltonian can be written that
would include the degrees of freedom for the system, the
local environments, and the global environment illustrated in
Fig. 1. Given such a specification, a projection of the Hamil-
tonian to the system alone, and a study of its correlation
functions would reveal its effective temperature and related
properties. However, we found earlier that the projection
onto a system coupled to a single time-dependent local res-
ervoir can be described by the iGLE and an associated time-
dependent Hamiltonian.20,34 In what follows, we thus take a
simpler approach to the solution of our objective by gener-
alizing the iGLE and its associated time-dependent Hamil-
tonian for the case where the system can be coupled to many
distinct local reservoirs. While much of the discussion takes
advantage of the form of the auxiliary Hamiltonian system to
derive various correlation functions, all of the latter involve
only variables of the reduced dimensional system. As such,
these results are independent of the particular specification of
the auxiliary Hamiltonian.

A. Multiple-reservoir model with fixed temperature

The Brownian motion of a tagged—or chosen—particle
immersed in a single equilibrium thermal bath is well under-
stood. More generally, however, the local environment of the
particle can be further divided into a set of different
reservoirs—viz., distinct local baths—with separately identi-
fiable characteristic properties. In this section, all of these
reservoirs are assumed to be at the same temperature and
therefore independently satisfy the same Boltzmann distribu-
tion over their coordinates, �cf. Fig. 2�. A more general case
in which these reservoirs may follow different temperatures,
and consequently, as a whole, the environment does not fol-

low a simple single-temperature Boltzmann distribution, is
addressed in the next section.

In order to describe the dynamics of a particle solvated
by many distinct reservoirs, one can generalize slightly the
Zwanzig-type Hamiltonian,20,35

H =
pq

2

2
+ V�q� + �V1�q,t� + �V2�q�·�,t�

− 	
k

gk�t�	
i

ci
�k�xi

�k�q + 	
k

Hb
�k�, �2.1�

where each reservoir, k, is represented by a distinct set of
harmonic modes. The modes in each reservoir interact di-
rectly only with each other and the tagged particle, and indi-
rectly to modes in other reservoirs through their mutual cou-
pling to the tagged particle. In the Hamiltonian of Eq. �2.1�,
the sum of the first and second terms, pq

2 /2+V�q�, is the bare
energy of the tagged particle. The last term is a sum of
Hamiltonians,

Hb
�k� = 1

2	
i

��pi
�k��2 + ��i

�k�xi
�k��2� , �2.2�

each of which represents the energy of the kth bath reservoir
with coordinates xi

�k� and momenta pi
�k�. The fifth term pro-

vides the bilinear coupling between the bath modes and the
particle, in which 	k and 	i denote the summation over the
bath reservoirs and the bath modes �i.e., bath frequencies�.
The third term,

�V1�q,t� =
1

2	
k

	
i

gk
2�t�
 ci

�k�

�i
�k��2

q2, �2.3�

is the renormalization of the potential which eliminates the
time-dependent spectral shift, and the fourth term,

FIG. 2. �Color online� A schematic representation of the model investigated
in Refs. 19, 20, and 35. The subsystem interacts with multiple bath reser-
voirs by means of time-dependent couplings while the temperature remains
constant.
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�V2�q�·�,t� = 1
2�

0

t

dt�a�t,t���q�t�� − q�t��2

− 1
2q�t�2�

0

t

dt�a�t,t�� , �2.4�

provides the time-dependent correction to the memory
effects.20,35 The nonstationary memory correction in Eq.
�2.4� was defined earlier as

a�t,t�� = 	
k

gk�t�ġk�t����th�k�t − t�� , �2.5�

where

��th�k�t − t�� = 	
i

 ci

�k�

�i
�k��2

cos �i
�k��t − t�� �2.6�

is the friction kernel for the kth reservoir at thermal equilib-
rium.

The nonlocality in the �V2�q�·� , t� term has been ad-
dressed earlier20,35 and is necessary because of the time de-
pendence in the coupling terms. �If said time dependence
were zero then this term would also be zero.� The former, in
principle, also arises in the case of space-dependent
friction36–40—viz., space-dependent coupling—where the
factors gk in the fifth term of Eq. �2.1� depend only on the
coordinate q. Although the transient coupling terms have re-
cently been noted in said case,41,42 they have been com-
pletely discarded in the corresponding Hamiltonian equa-
tions of motion by way of heuristic arguments concerned
with the possibility that they appear to violate causality. In
the present case, however, where several coupling terms de-
pend explicitly on time, the nonstationary memory correction
�V2�q�·� , t�, requiring the integration over the particle’s path
q�·� over all time, cannot be discarded. Indeed, this correc-
tion is necessary so as to ensure that the projection onto the
iGLE does not itself contain additional nontrivial terms as
detailed in Appendix B that would violate causality. As de-
tailed earlier, the component of the nonstationary memory
correction that violates causality does not present any prob-
lems because it is smaller than other terms that have also
been neglected in this formalism.

In Ref. 20, the iGLE �Eq. �1.3�, with a family of nonsta-
tionary friction kernels� was shown to be the projection of
the equations of motion derived from Hamiltonian Eq. �2.1�
when there is only one reservoir. In the current case of mul-
tiple reservoirs, the friction kernel in the iGLE can be repre-
sented as a sum of equilibrium friction kernels modulated by
distinct functions gk�t� defining the coupling strength to the
corresponding bath reservoirs,

��t,t�� = 	
k

gk�t�gk�t����th�k�t − t�� . �2.7�

The functions gk�t� are specified by the time dependence of
the coupling up to a trivial arbitrariness in their initial values
that is renormalizable. In cases when the reservoir is initially
uncoupled to the particle, then said values are necessarily
specified and equal to zero, however.

The FDR Eq. �1.5� for the projection of the iGLE, Eq.
�1.3�, with the multireservoir friction, Eq. �2.7�, results from
the Hamiltonian of Eq. �2.1�, if the initial distribution is of
the form,

P � exp�−
1

2kBT
	
k,i

�pi

�k��0��2

+ ��i
�k�xi

�k��0� −
ci

�k�gk�0�
�i

�k� q�0�
2�
 , �2.8�

and the conditions

�pi
�k��0�pj

�l��0�� = kBT�ij�kl, �2.9a�

�
�i
�k�xi

�k��0� −
ci

�k�gk�0�
�i

�k� q�0��
�
� j

�l�xj
�l��0� −

cj
�l�gl�0�
� j

�l� q�0��� = kBT�ij�kl, �2.9b�

�pi
�k��0�
� j

�l�xj
�l��0� −

cj
�l�gl�0�
� j

�l� q�0��� = 0 �2.9c�

are satisfied.
The iGLE with multiple and distinct reservoirs has thus

been specified, and allows for temporal changes in the re-
sponse of the environment, albeit while all such reservoirs
maintain the same constant temperature.

B. Multiple-reservoir model with time-dependent
response

1. Squeezing bath modes

In principle, the effective temperature of each of the res-
ervoirs �solvating the tagged particle� need not be the same
as they are not coupled to each other directly. This situation
is illustrated in Fig. 3, in which the temperature of each
reservoir is different, perhaps as a consequence of some un-
specified external or internal processes. It can be imple-
mented within the Hamiltonian representation of a particle

FIG. 3. �Color online� A schematic representation of the generalized model
described in this work. The subsystem interacts with multiple bath reservoirs
by means of time-dependent couplings while the temperature in each bath is
also subject to change.
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interacting with multiple reservoirs by supposing that the
bath modes are not static—that is, their effective masses and
coordinate scales are allowed to vary in time.

The time-dependent functions, hk�t� and �k�t�, are now
introduced so as to represent the time-dependent scaling in
the force constant and mass of the kth bath mode, respec-
tively. The Hamiltonian of the ith oscillatory bath mode be-
longing to the kth reservoir can thereby be written as

Hb,i
�k��xi

�k�,pi
�k�,t� =

�pi
�k��2

2�k
2�t�

+
1

2
��i

�k�hk�t�xi
�k��2. �2.10�

The terms hk�t� and �k�t� combine to determine the time
dependence of the mode frequencies in the kth reservoir.
Their initial values can be chosen as hk�0�=�k�0�=1 without
loss of generality. Meanwhile, the scaling of the force con-
stant effectively narrows �or widens� the configuration space
available to the oscillator at a given temperature. Such a trick
of “squeezing” bath oscillators leads to changes in the total
energy of the reservoir, and thereby shifts the reservoir tem-
perature. The existence of such temperatures relies on the
fact that the relaxational redistribution of the collective en-
ergy within the modes is sufficiently fast that the bath re-
equilibrates on the time scales of the particle motion. In other
words, the process of bath mode squeezing is assumed to be
adiabatic and to vary on time scales longer than the periods
of oscillation in the nontrivial modes of a given reservoir.

The time-dependent Hamiltonian Eq. �2.1� can now be
modified by introducing the scaling functions hk�t� and �k�t�,

H =
pq

2

2
+ V�q� + �V1�q,t� + �V2�q�·�,t�

− 	
k,i

ci
�k�gk��t�hk�t�xi

�k�q + 	
k,i

Hb,i
�k��xi

�k�,pi
�k�,t� . �2.11�

Here, the coupling coefficients gk��t� are introduced so as to
simplify the structure of the Hamiltonian. These coefficients
are unequal to the earlier coefficients gk�t�. Nevertheless,
they can be connected through the expression,

gk��t� = gk�t�� hk�t�
�k�t�

, �2.12�

allowing comparison to the earlier results obtained using the
original iGLE.19,20,30,35 In Eq. �2.11� the renormalization po-
tential, �V1, is given by Eq. �2.3� with gk�t� replaced by gk��t�.
The nonstationary memory correction, �V2, is defined by Eq.
�2.4� with

a�t,t�� = 	
k

hk�t�
�k�t�

gk�t�ġk�t����th�k��k�t� − �k�t��� , �2.13a�

where gk�t� has not been replaced by gk��t�,

�k�t� � �
0

t

hk�s�/�k�s�ds �2.13b�

and ��th�k�·� is defined in Eq. �2.6�.
Note that the coupling coefficients gk�t� can also depend

on the temperature. Although in the framework of this ap-
proach there is no recipe for connecting the temperature-
driving functions �k�t� and hk�t� to these coefficients, such a

connection can in principle be obtained from a deeper analy-
sis based on mode-coupling theory, direct extraction of these
functions from simulations �Ref. 35; see also Sec. III C be-
low�, or experiments.

As was done in the earlier section with respect to the
behavior of gk�t�, the functions �k�t� and hk�t� must be re-
quired to be effectively stationary on the correlation time
scales of the fastest bath modes.25,26 This so-called slow-
bath-mode “squeezing” assumption is necessary because oth-
erwise there would always exist a bath mode whose response
to fluctuations would be so chaotic that it would not ever
relax to quasiequilibrium limits. Evidently, for low spectral
frequencies, this imposes some restrictions on the rates of
change of �k�t� and hk�t�, and thus, implies a related assump-
tion that low-frequency bath modes contribute negligibly to
the particle’s motion. These assumptions are valid, for ex-
ample, in the overdamped case when the spectral density,
J���, of the bath Hamiltonian is proportional to �s with s
	1 at �→0; hence, the small bath frequencies are not
coupled to the system.

2. Effective temperature of each reservoir

The strategy for solving the dynamics of Eq. �2.10�, tak-
ing into account its hierarchical structure, focuses first on the
solution of the local dynamics of the bath modes within a
given kth reservoir as if it does not interact with the rest of
the modes. In the next section, we will use these states as a
reference for the approximate solution of the global dynam-
ics. The accuracy of this approach relies on the assumption
that the coupling between the reservoirs and the tagged par-
ticle is weak, as has indeed been assumed from the outset.
For simplicity, in this subsection the upper indices �k� will
often be omitted as all of the formulas herein are necessarily
being solved within a given kth reservoir.

At any given time, the energy manifold of the ith bath
mode in the kth reservoir is simply a function of the phase
space variables, �xi , pi�, determined by the instantaneous pa-
rameters, i.e.,

Ei�t� =
pi

2

2�k
2�t�

+
�i

2

2
hk�t�2xi

2. �2.14�

If �k�t� and hk�t� change slowly relative to the oscillator
frequency, then the symplectic area of this manifold—viz.,
the action I—will be an adiabatic invariant. On the elliptical
energy manifold defined by Eq. �2.14�, this invariant is given
by

I =
�k�t�Ei�t�

hk�t��i
=

�k�0�Ei�0�
hk�0��i

=
Ei�0�

�i
, �2.15�

where the last equality follows from the initial choice,
hk�0�=�k�0�=1. The time-invariance of I thus provides a
useful connection,

Ei�t� = Ei�0�
hk�t�
�k�t�

, �2.16�

between the energies of the ith bath mode at various times.
Given that each bath mode is initially equilibrated at its

corresponding reservoir temperature Tk�0�, i.e., the initial en-
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ergies Ei�0� of the reservoir are Boltzmann distributed, the
connection in Eq. �2.16� readily implies that the energies
Ei�t� at any given time are also Boltzmann distributed at the
temperature,

Tk�t� = Tk�0�
hk�t�
�k�t�

. �2.17�

Thus, the ratio hk�t� /�k�t� establishes the time dependence in
the temperature of the kth bath reservoir. Although the inter-
action between the reservoir and the tagged particle could, in
principle, alter this structure by way of heat transfers, in
practice it does not do so. The bath reservoir is assumed to
be sufficiently large that such transfers are small in compari-
son with the total energy of the reservoir. �This assumption is
not very severe because it must be satisfied in order for the
bath to have a well-defined quasiequilibrium temperature!�
The functions hk�t� and �k�t� are auxiliary and are not known
a priori, but the time-dependent temperature entering in Eq.
�2.17�, together with the coupling strength coefficients gk�t�,
can either be found from simulations or estimated from ex-
perimental data. For example, they have been obtained in the
case of a diffusing particle in a swelling colloidal suspension
in Ref. 35.

The initial temperatures of the various bath reservoirs
need not be the same because some modes may be connected
to distinct heat sources and sinks leading to steady state en-
ergy transport through the system between the reservoirs.
Indeed, the nonequilibrium dynamics of a particle connected
to reservoirs with different time-independent temperatures
has been explored by Kurchan and co-workers.43,44 But, if
the system is initially in equilibrium, then in the absence of
such energy flows, the initial temperatures of all the reser-
voirs will be the same. More generally, however, the initial
probability distributions �cf. Eq. �2.8�� for a given reservoir
can be rewritten as,

Pk � exp�− 	
i

1

2kBTk�0�
�pi
�k��0��2 + ��i

�k�xi
�k��0�

−
ci

�k�gk�0�
�i

�k� q�0�
2�� , �2.18�

for the kth reservoir temperature, Tk�0�. The correlations in
Eqs. �2.9a� and �2.9c� are still satisfied if one replaces the
temperature T with that of the given reservoir, Tk�0�. Such an
initial equilibration seems to be artificial when the tempera-
tures Tk change with time due to the interactions of reser-
voirs with the tagged subsystem and the global bath. Note,
however, that the initial time, t=0, can be formally shifted to
the far past. The system then has no memory of the initial
conditions and, thus, the resulting iGLE remains unaffected.

3. Equations of motion

The equations of motion for the many-reservoir case fol-
low directly from the Hamiltonian in Eq. �2.11�,

ẋi
�k� =

pi
�k�

�k
2�t�

, �2.19a�

ṗi
�k� = − �hk�t��i

�k��2xi
�k� + cigk��t�hk�t�q , �2.19b�

q̇ = pq, �2.19c�

ṗq = −
�V�q�

�q
+ 	

k,i
ci

�k�gk��t�hk�t�xi
�k�

− 	
k,i

 ci

�k�gk��t�
�i

�k� �2

q −
�

�q�t�
�V2�q�·�,t� , �2.19d�

where the indices, k, referring to a given reservoir have been
explicitly retained to help the reader. However, they are
somewhat cumbersome, and so in this section it is conve-
nient to replace explicit reference to the superscripted reser-
voir index. Instead the collective index i���i ,k�� will be
used for this reference, as in, e.g., �i ��i

�k�.
As discussed in Sec. II A, the presence of the nonstation-

ary memory correction ���V2� /�q�t� in Eq. �2.19� introduces
the possibility of violations of the causality principle. Indeed,
the variational principle applied to the calculation of this
term gives an apparent contribution to the force from future
trajectories. However, the error in this contribution is on the
order of the neglected terms in the perturbative treatment in
the projection, and it was seen earlier35 that all of these small
errors can be safely neglected. But, the nonstationary
memory correction ���V2� /�q�t� cannot be entirely neglected
because it contains a nontrivial correction which ensures that
the projection to the iGLE does not violate causality up to
the second order of the perturbation expansion �cf. Appendix
B�.

From Eqs. �2.19a� and �2.19b�, one can derive

ẍi + 
k�t�ẋi + �i
2�t�xi = ci

gk��t�hk�t�
�k

2�t�
q , �2.20�

where


k�t� =
2�̇k�t�
�k�t�

, �2.21a�

�i�t� =
hk�t�
�k�t�

�i . �2.21b�

The assumption of a slow squeezing bath mode, dis-
cussed before, must now be restated in terms of both time-
dependent parameters, hk�t� and �k�t�. After a little algebra,
it can be shown to reduce to the requirement

� �̇k

�k
+

ḣk

hk

�� �i , �2.22�

which must be satisfied for all modes i in a kth reservoir.
Under this assumption, one obtains the following result �as
shown in Appendix A�:
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xi = ui�t�xi�0� + ui�t�ẋi�0��
0

t dt�

�ui�t���k�t���2

+ ciui�t��
0

t dt�

�ui�t���k�t���2�
0

t�
gk��s�hk�s�ui�s�q�s�ds ,

�2.23�

where the bath mode oscillations are described by

ui�t� =
cos �i�k�t�
��k�t�hk�t�

, �2.24�

and the effective time �k can be written as

�k�t� �
1

�i
�

0

t

�i�t��dt� = �
0

t hk�t��
�k�t��

dt� = �
0

t Tk�t��
Tk�0�

dt�.

�2.25�

Perhaps not surprisingly, the effective time changes “faster”
when the temperature increases. A similar transformation of
time has been found earlier in simplifying overdamped
Langevin equations driven by time-dependent temperature
baths.45–47

The projected equation of motion for the tagged particle
reduces to the iGLE form after the appropriate averaging
over the distributions derived in the previous subsection.
�The details of this derivation can be found in Appendix B.�
The nonstationary friction has a form similar to that of Eq.
�1.3� with

��t,t�� = 	
k

Tk�t�
Tk�0�

gk�t�gk�t����th�k��k�t� − �k�t��� �2.26a�

=	
k

� Tk�t�
Tk�t��

�k�t,t�� �2.26b�

for t	 t�, where the weighted friction of the kth mode is
defined as

�k�t,t�� �
�Tk�t�Tk�t��

Tk�0�
gk�t�gk�t����th�k��k�t� − �k�t��� ,

�2.26c�

and is symmetric in the two times, t and t�. �Note that ��th�k�·�
is an even function of its argument, as can be seen in Eq.
�2.6�.� Recalling the definition for the bath reservoir tem-
perature and friction kernel in Eqs. �2.17� and �2.6�, respec-
tively, the nonstationary stochastic force is found to be

��t� = 	
k

Tk�t�
Tk�0�

gk�t�	
i

ci

�i
�pi�0�sin �i�k�t�

+ 
�ixi�0� −
cigk�0�

�i
q�0��cos �i�k�t�
 . �2.27�

Imposing the initial condition in Eq. �2.18�, the random
force correlation function becomes

���t���t��� = 	
k

kB
Tk�t�Tk�t��

Tk�0�

�gk�t�gk�t����th�k��k�t� − �k�t��� �2.28a�

=kB	
k

�Tk�t�Tk�t���k�t,t�� . �2.28b�

Equations �2.26� and �2.28� can be used to recast the
extended form of the FDR,

���t���t��� = kBTeff�t,t����t,t�� , �2.29a�

where the effective temperature is

Teff�t,t�� =
	k

�Tk�t�Tk�t���k�t,t��

	k� Tk�t�
Tk�t��

�k�t,t��
, �2.29b�

for t	 t�. Equations �2.29� comprise the central result of this
work and generalize the FDR by including the simultaneous
interactions of the tagged particle with different nonstation-
ary thermal reservoirs. In particular, Eq. �2.29b� provides a
clear prescription of the effective temperature of the chosen
particle that emerges as a consequence of averaging the mi-
croscopic dynamics of many reservoirs. This is a nontrivial
result because it dances between microscopic and macro-
scopic quantities. Moreover, as written, the effective tem-
perature appears to be asymmetric between the two times, t
and t�, and hence may cause alarm. However, only the prod-
uct of Teff and � in Eq. �2.29a� must remain symmetric. As
shown in the discussion that follows, this product is indeed
symmetric with respect to the two times in its argument, and
Teff reduces to forms that have earlier been derived or as-
sumed for a number of limiting cases.

One possible concern with the underlying equations that
have led to the Eq. �2.29� lies in the specification of the
initial condition for the system and its environment, given
that there must evidently be some environmental memory of
the previous motion by way of the values of q�t� at earlier
times. In past and present work, we have typically employed
one of three boundary conditions: �i� The system is at equi-
librium at the initial time, 0, just before the nonequilibrium
disturbance is effected. This requires us to run dynamics
starting at a time well prior to t=0, allowing the system to
equilibrate and fully prepare its environmental memory.
�This evidently requires sampling over many trajectories.�
�ii� Different reservoirs at t=0 are at distinct equilibrium
within themselves, but are not at equilibrium with each other.
In this case, we prepare each reservoir separately using the
procedure described for case �i�. �iii� The particle is suddenly
placed inside the reservoirs, and hence there is no prior
memory due to motion before t=0. In this section, we have
applied the boundary conditions from case �ii�, in order to
simplify the expressions from correction terms that would
have been trivial anyway. Indeed, the use of case �iii� for the
boundary conditions in the numerical simulations shown be-
low did not affect the results.

It may appear that the terms in the central result of Eq.
�2.29� are contingent on the creation of an associated Hamil-
tonian of the form of Eq. �2.10� used in its analytical deriva-

244506-7 Temperature in nonequilibrium systems J. Chem. Phys. 126, 244506 �2007�

Downloaded 03 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



tion. However, as in other such reconstructions using the
latter auxiliary infinite-dimensional representation, the pro-
jected form of the central result contains no object with ex-
plicit reference to any unprojected dynamics. As such, it
should be capable of describing any dynamics which is cap-
tured by the continuum representation of the iGLE. More
specifically, the temperatures Tk can be calculated or mea-
sured directly from each of the independent baths. The cou-
pling terms gk and memory times �k can be calculated or
measured directly by obtaining the correlation functions of
the forces exerted on the tagged particle by each bath, re-
spectively, upon removal of the thermal component. Such a
procedure has been used in Ref. 35 in the limit in which the
chosen particle is coupled to only one bath. Several addi-
tional examples are provided below in which the particle is
coupled to multiple baths. In each of these cases, the associ-
ated functions, gk�t�, �k�t�, and Tk�t�, necessary for the appli-
cation of Eq. �2.29� are constructed. It is notable that these
functions can be obtained without recourse to the auxiliary
infinite-dimensional form of Eq. �2.10�.

III. RESULTS AND DISCUSSION OF LIMITING CASES

In order to better understand the effective temperature
expression derived above, it is helpful to look at a number of
limiting cases. In Sec. III A, the structure of the correlation
functions when all the reservoirs are held at constant but
distinct temperatures is shown to agree with the earlier per-
spective of Kurchan and coworkers.43 In Sec. III B, the gen-
eralized Langevin equations used earlier to describe aging
systems are recovered for when the reservoirs are all held at
a homogeneous, but time-dependent, temperature. This latter
limit is also equivalent to that suggested earlier in Ref. 35 in
a case studying driven nonequilibrium colloidal suspensions.
In Sec. III C 2, the two-temperature model of Refs. 25 and
26 is also recovered in the limit where the system is coupled
to two local reservoirs. A set of gedanken experiments
wherein the bath is coupled to three local reservoirs is shown
in Sec. III C 3 to lead to a nontrivial effective temperature in
agreement with the central results of this work. In Sec.
III C 4, the local quasiequilibrium limit of a non-Markovian
Fokker-Planck equation explored earlier by Rubi and
co-workers48 is shown to lead to correlation functions
equivalent to those in the corresponding limit of this work.
Thus, the central result for the effective temperature of the
system driven by nonequilibrium local environments is
shown to capture all the previous limits as well as extend the
formalism to heretofore unknown cases.

Before proceeding, it is perhaps also useful to recapitu-
late the separation of time scales in the hierarchy illustrated
by Fig. 1 that has been assumed in constructing the central
result in Eq. �2.29�. The relaxation times for responses to
large perturbations of the system �s, the local reservoirs �k,
and the global environment �g must satisfy the simple order-
ing �s��k��g. Meanwhile, the system is so small compared
to the local reservoir that any perturbation at times on the
order of �s leads to no effective change of the local reservoir
behavior. Any sustained change in the system behavior over
times longer than �k� will affect and change the behavior of

the k�th reservoir, but it will simply lead to a change of the
quasistatic response of said reservoir to the system at the
short times scales near �s. An analogous description is true
for the time scales between the local reservoirs and the glo-
bal bath. Because of these inequalities, any time dependence
in Tk and gk must be slow in comparison with the motion of
the system. However, as we have seen in earlier work, and
shown here in the numerical work, the time scales do not
have to be nearly so disparate as the corrections are small.

A. Environments with constant temperature
inhomogeneities

The structure of Eq. �2.28� and the associated stochastic
equations derived from them allows one to describe the dy-
namics of a chosen particle connected to many reservoirs
where each can be at a different temperature. If these tem-
peratures are constant in time, i.e., Tk�t�=Tk�t��=Tk, then
from Eqs. �2.25�, �2.26a�, and �2.28� one obtains

��t,t�� = 	
k

gk�t�gk�t����th�k�t − t�� , �3.1�

���t���t��� = 	
k

kBTkgk�t�gk�t����th�k�t − t�� . �3.2�

An analogous case has been discussed in Ref. 43 in the sta-
tionary limit when gk�t��1 �stable nonuniform environ-
ment�. Thus, Eqs. �3.1� and �3.2� extend the previous treat-
ment so as to include nonequilibrium baths.

The implementation of the iGLE theoretical framework
discussed above follows readily for any given nonequilib-
rium system interacting with many nonequilibrium baths.
The key step is the identification of which baths—viz., tem-
perature heat sinks—are in contact with the chosen particle
as a function of time. Nonzero and zero values of gk�t� at any
given time correspond to whether said reservoir is connected
and disconnected, respectively, from the particle at the given
time, t. �An analogous procedure was used in Ref. 49 for
deriving a variant of the fluctuation theorem.� This will help
to switch the chosen subsystem between different heat reser-
voirs with different temperatures. If the reservoir temperature
does not change significantly during a period when an appro-
priate coupling term differs from zero, one obtains Eqs. �3.1�
and �3.2�.

B. Environments with time-dependent homogeneous
temperature

If the temperature changes uniformly for all the bath
modes, Tk�t�=T�t�, then Eq. �2.28� simplifies to

���t���t��� = kBT�t����t,t�� . �3.3�

Such generalized FDRs �GFDRs� have been used in the de-
scription of the nonequilibrium steady-state dynamics of
glassy systems, for example.50,51 The relations between au-
tocorrelation and response functions, like those of Eq. �3.3�,
are frequently considered in the literature as a signature of
FDR violations �quasi-FDR� arising from partial equilibra-
tion among a subset of degrees of freedom, and the quantity
T�t�� is treated as an effective temperature. In the specific
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case of aging systems,50,52,53 the effective temperature de-
pends on both t and t�. The name “quasi-FDR” and the use of
Teff as an auxiliary parameter are reasonable due to the fact
that the actual thermodynamic temperature is constant in
these studies.

The results of the previous section, however, allow for
the recognition that T�t�� is the true ambient temperature at
the time t�, and the interpretation that GFDR in Eq. �3.3�
expresses the transient behavior of the system. Note that in
the iGLE model, the partial relaxation of the baths corre-
sponds to different dependencies Tk�t� �included in the
GFDR, Eq. �2.28�, and leads to the two-time dependence of
Teff in Eq. �2.29a�.

In the specific case when all the coupling coefficients are
also equal, gk�t�=g�t�, we obtain

��t,t�� =
T�t�
T�0�

g�t�g�t���th���t� − ��t��� , �3.4�

for t	 t�, where �th��−����	k��th�k��−��� is the friction
kernel of the whole system at equilibrium, and

��t� =
T�t�
T�0�

g�t��th���t�� , �3.5a�

with

��th����th����� = kBT�0��th�� − ��� . �3.5b�

It is instructive to compare these results with those obtained
in Ref. 30 from phenomenological considerations. Namely,
the friction kernel used in that work,

��t,t�� = g�t�g�t���th�t − t�� , �3.6�

coincides with Eq. �1.4� and may include effects due to the
temperature change implicitly through the coupling coeffi-
cient g�t� only.

This restriction on the memory kernel also induces the
main difference between the two approaches: the use of the
real time t versus the effective one, ��t�. Hence, only the
amplitude of the stochastic force changes along with the tem-
perature alteration, and gives

��t� =� T�t�
T�0�

g�t��th�t� . �3.7�

The use of the real time instead of the parametrized one
implies that the random force autocorrelation function ac-
quires a different form,

���t���t��� = kB
�T�t�T�t��g�t�g�t���th�t − t��

= kB
�T�t�T�t����t,t�� . �3.8�

This FDR varies from Eq. �3.3� insignificantly if the tem-
perature changes slowly during the solvent response time,
when �th�t− t�� differs from zero. However, the use of the
effective time to describe the behavior of the Gaussian noise
in Eq. �3.5� provides an important contribution that allows
the correct projected equations of motion to better control the
intensity of the stochastic force when the bath is far from
equilibrium. This is the main difference between the Hamil-
tonian approach of the current work and that of Ref. 30

where the random force is governed only by the changing
amplitude.

C. Stochastic dynamics

The friction kernel of a free heavy particle, diffusing in
solution without external potentials �V�q�=0�, has a memo-
ryless form,54

��th�k��� = 2�0k���� . �3.9�

Recalling the standard functional relation, ��f�x��=��x
−x0� / �f��x0��, where for simplicity we have assumed that x0

is the only root of the argument, i.e., f�x0�=0, then Eqs.
�2.26a� and �2.28� lead to

��t,t�� = 	
k

gk
2�t� · 2�0k��t − t�� � 2
�t���t − t�� , �3.10�

���t���t��� = kB	
k

Tk�t�gk
2�t� · 2�0k��t − t��

� kBTeff�t���t,t�� , �3.11�

where the effective temperature, Teff�t�, of the Brownian par-
ticle is set to

Teff�t� =
	kTk�t�gk

2�t��0k

	kgk
2�t��0k

, �3.12�

so as to satisfy the FDR.
The effective temperature is consistent with that of Refs.

44 and 43 for the special case when the noise is memoryless
and all the reservoirs are stable in time, i.e., when the tem-
peratures Tk are constant and gk=1. Herein, the resulting
iGLE turns into the memoryless irreversible Langevin equa-
tion �iLE�,

q̈�t� = − 
�t�q̇�t� + ��t� , �3.13a�

���t���t��� = 2kBTeff�t�
�t���t − t�� . �3.13b�

The form of this stochastic equation of motion is similar to
that of a particle diffusing in a medium with spatial tempera-
ture gradients,41

q̈ = − 
�q�q̇ + ��q,t� , �3.14a�

���q,t���q,t��� = 2kBT�q�
�q���t − t�� . �3.14b�

In both cases, the particle quickly equilibrates as it traverses
from one local region to another, in conformity with the
memoryless limit. Such a traversal is reminiscent of space-
dependent friction dynamics wherein the stochastic particle
traverses between distinct dissipating environments. The dif-
ference here is that the dissipation can change even if the
particles stay in the same region because of changes in the
dissipating environment. Thus, the earlier Darboux-type to-
pological construction of the dissipating environments is
now extended to be time-dependent.
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1. Uniform temperature limit

In the limit where all the reservoirs obey a homogeneous
temperature profile, Tk�t�=T�t� for all k, so that Teff�t�=T�t�
�see Eq. �3.12��, the friction coefficient in Eq. �3.13� be-
comes


�t� = G2�t��0, �3.15�

where G�t� is the effective coupling coefficient defined ac-
cording to Ref. 35,

G2�t� = 	
k

gk
2�t��0k/�0,

�3.16�
�0 = 	

k

�0k.

We thus recover the iGLE of Ref. 35 in which the stochastic
particle is effectively coupled to a single homogeneous �but
time-dependent� reservoir.

2. Two-reservoir limit

In Refs. 25 and 26, the LE for the Brownian particle is
derived in the case that the latter is dissipated by two reser-
voirs: a global thermal bath at temperature T, and a local
nonequilibrium �time-dependent� bath. The LE reads, as
usual,

q̈�t� = − �
eq + 
neq�q̇�t� + ��t� , �3.17�

but with the stochastic force subdivided into equilibrium and
nonequilibrium parts, ��t�=�eq�t�+�neq�t�. The FDR for the
equilibrium part is ��eq�t��eq�t���=2
eqkBT��t− t��. The en-
ergy density of the nonequilibrium bath modes changes with
time and was found in Refs. 25 and 26 to be

u��,t� =
1

4
neq
�

−�

�

d���neq�t��neq�t + ���ei�� �3.18a�

=
kBT

2
+ e−
t/2�u��,0� −

kBT

2

 �3.18b�

This takes into account the average dissipation—
 in the
notation of the earlier articles—of the nonequilibrium reser-
voir modes due to their coupling to the thermal reservoir.

Within the framework of the present approach, all the
modes of the nonequilibrium reservoir have one and the
same initial temperature, u�� ,0�=kBT0 /2. The time-
dependent temperature of this reservoir according to Eq.
�3.18� is

Tneq�t� = T + e−
t/2�T0 − T� , �3.19�

and it is the same for all the modes. Taking the inverse Fou-
rier transform of Eq. �3.18�, one obtains

���t���t + ��� = 2kBTeff�t�
���� , �3.20�

where

Teff�t� =

eqT + 
neqTneq�t�


eq + 
neq
. �3.21�

This latter result is in agreement with the effective tempera-
ture in Eq. �3.12� if gk�t��1. The latter requirement is pre-
cisely what is needed to ensure that all of the nonequilibrium
baths reduce to the single local nonequilibrium bath under
consideration in this subsection.

Hence, the current construction of the generalized effec-
tive temperature of a particle connected to an arbitrary num-
ber of baths reduces to the appropriate limit when it is con-
nected to two nearly-separable baths.

3. Three-reservoir gedanken experiments

To further illustrate the accuracy of Eq. �3.12� in provid-
ing the effective temperature of a subsystem interacting with
nonequilibrium reservoirs, we construct a simple model for
the diffusion of a heavy spherical particle, with mass M,
immersed in a three-component solvent gas of light spherical
particles. The particles in each of the components are as-
sumed to have the same mass m. Each component particle
interacts only with other particles of the same component
through hard-sphere collisions so as to quickly achieve a
quasiequilibrium temperature Tk for the kth component. All
the particles interact with the heavy particle through hard-
sphere collisions. A critical assumption is that each compo-
nent does not interact with the other component, and thus
each can maintain a distinct temperature for very long times.
This severe assumption is the origin of our use of the term
“gedanken” to describe this model.

In principle, a numerical simulation of this system can
be accomplished using a many-particle molecular dynamics
simulation in which each solvent component does not in any
way interact with each other. However, if the desired observ-
ables are restricted to correlation functions at times longer
than the mean time to collision, then these assumptions are
sufficiently severe that the dynamics of the system can in-
stead be performed using a statistical approach à la the En-
skog theory for gases. Briefly, the algorithm involves the free
propagation of the hard-sphere particle in three-dimensional
space for a duration that extends to a randomized time that is
consistent with the statistics for collisions with each of the
particles. The collision takes place with a particle of type k
whose three-dimensional momentum is consistent with a
Boltzmann distribution at temperature Tk. After the collision,
the heavy mass has a new momentum and proceeds to the
next collision.

More precisely, the time tk to the next collision between
the heavy particle and a particle from the kth reservoir is
calculated as a Poissonian stochastic variable with the aver-
age value

tk =
1

��R + rk�2�kuk�V�
, �3.22�

where R is the radius of the solute particle, rk is the radius of
particle in the kth reservoir, and �k is the number density of
the kth reservoir. The mean relative velocity uk�V�����V
−vk��� between the Brownian particle velocity V and the
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particle velocity vk of the kth reservoir is given in Eq. �3.24�
below. In the numerical simulation to be discussed, only
three reservoirs are included—that is, k� �1,2 ,3�—but the
algorithm would still be efficient for an arbitrary number of
reservoirs as long as they are finite in number. Given the
stochastic times, t1, t2, and t3, the heavy particle collides with
the reservoir particle whose corresponding collision time is
the shortest. The time t� and label k� of the closest collision
corresponds to this minimal tk.

To calculate uk, we again invoke the assumption that
each kth reservoir is distributed according to a Boltzmann
distribution that is unperturbed by its small interaction with
the heavy particle.55 Thus, the Maxwellian distribution of
particles of the kth reservoir,

fk�vk� = 
 m

2�kBTk
�3/2

exp
−
mvk

2

2kBTk
� , �3.23�

leads to the average relative velocity,56

uk�V� =�2kBTk

�m
exp
−

mV2

2kBTk
�

+
kBTk/m + V2

V
erf
V� m

2kBTk
� , �3.24�

where V is the velocity of the heavy solute particle and the
error function is defined as erf�x�=2/�� ·�0

x exp�−y2�dy.
Before the collision, the colliding bath particle is as-

signed a vector vk� whose components are calculated from
the corresponding Maxwellian distribution Eq. �3.23�. After
the collision, the change of the velocity of the heavy solute
particle is defined as

dV =
m

m + M
�vk� − V + �vk� − V� · n� ,

where n is the unit scattering vector. This vector is distrib-
uted isotropically when hard spheres collide.57

Three different gedanken simulations have been per-
formed with the parameters prescribed as follows. The vol-
ume and the mass of the solute particle are taken to be 64
times larger than that of the reservoir particles, which suf-
fices to ensure the assumed time scale separation. The spe-
cific values for the masses and radii are taken to be M
=5.181�10−18 g, m=8.095�10−20 g, R=4 nm, and rk

=1 nm. This is consistent with the known density of bulk
gold, ca. 19.32 g/cm3, and corresponds to large and small
spherical clusters with about 16 000 and 200 gold atoms,
respectively. Such clusters have been readily constructed in
the literature,58,59 though of course the separation of the light
clusters into three distinct reservoirs would be somewhat
harder to maintain for extended times.

The number densities of the reservoirs are taken to be
�k=1.919�10−6 nm−3 corresponding to a dilute gas at pres-
sures on the order of 10−4 Atmosphere. The temperatures of
the first and third reservoirs are T1=100 K and T3=500 K,
respectively. The temperature T2 of the second reservoir is
varied in each of the simulations as noted in Table I. As the
number densities of the three reservoirs are equal, their av-
erage temperature, Tavg= �T1+T2+T3� /3, might naively be

expected to be the effective temperature of the heavy par-
ticle. In order to not bias the results away from this naive
estimate, the heavy particles are initialized with velocities
drawn from a Maxwellian distribution at Tavg. We found that
good convergence and adequate sampling for the correlation
functions of interest to this work could have been obtained
for each case by sampling 10 000 trajectories for up to 4 ms.

The results of the simulations are presented in Table I,
where �V is the relaxation time of the velocity autocorrelation
function �VACF� of the heavy solute, �E is the relaxation
time of the solute’s kinetic energy, and Teff

sim���M /3kB�
��V2�� is the observed kinetic energy of the Brownian par-
ticle expressed as an effective temperature. The theory dis-
cussed thus far predicts that Tavg will be equal to Teff only if
all the coupling coefficients are equal. Indeed, the corre-
sponding temperatures listed in Table I are unequal, indicat-
ing that a naive equilibrium treatment does not suffice.

The effective temperature for these nonequilibrium sys-
tems can be calculated with the help of the central expression
from Eq. �2.29� reduced to the form of Eq. �3.12� as appro-
priate for the current model. The friction coefficients for each
reservoir are an input to this equation, but they can readily be
calculated in this case. They are proportional to the average
of the reciprocal relaxation times of Eq. �3.22� weighted by
the velocity distribution f�V� of the heavy particle,

gk
2�0k = 2

3��R + rk�2�kuk, �3.25a�

where

uk � ���V − vk��� =� uk�V�f�V�d3V . �3.25b�

If indeed the heavy mass motion can be described as having
an effective temperature Teff, then its velocity is simply the
Maxwellian distribution at the temperature Teff that is to be
determined. Integration of Eq. �3.25b� leads to

uk =� uk�V�f�V�d3V =� 8

�

 kBTeff

M
+

kBTk

m
� . �3.26�

Substitution of Eqs. �3.25� and �3.26� into Eq. �3.12� gives
the self-consistent equation,

TABLE I. The results of a numerical gedanken experiment are summarized
in this table. The chosen particle is coupled to three distinct baths with
temperatures, T1, T2, and T3, respectively. In all three experiments,
T1�=100 K� and T3�=500 K� are held constant, while T2 is varied as noted in
the table. Various relaxation times and temperatures for all three experi-
ments are provided. The “sim” superscript denotes a result computed di-
rectly from the simulation, and the “theo” superscript denotes a result cal-
culated using the theory described in the text.

Relaxation time, �s Temperature, K

T2, K �V
sim �V

theo 2�E Teff
sim Teff

theo Tavg

100 0.3513 0.3483 0.3621 307.1 309.3 233.3
300 0.2984 0.2978 0.2992 346.4 348.6 300.0
500 0.2704 0.2703 0.2701 422.3 425.4 366.7
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Teff =
	k

�Teff/M + Tk/m · Tk

	k
�Teff/M + Tk/m

. �3.27�

The effective temperatures Teff
theo calculated from this theory

either by solving this self-consistent equation or by entering
the inverse of the observed relaxation times into the basic
Eq. �3.12� agree within the digits of accuracy shown in Table
I and are thus included as a single value for each gedanken
experiment. The good agreement between the effective tem-
peratures predicted by the nonequilibrium theory and the
simulated effective temperatures demonstrates that the cou-
pling coefficients play a role in determining the apparent
temperature of a probe particle in the nonequilibrium situa-
tion where it is in contact with distinct reservoirs of varying
temperatures.

The VACF relaxation time �V can also be determined
using the arguments employed thus far. It takes the value,

�V
−1 = 	

k

gk
2�0k = 2

3	
k

��R + rk�2�kuk, �3.28�

which can be readily computed using the results from Eqs.
�3.25� and �3.26�. The values are listed in the table as �V

theo.
Again, the agreement between the nonequilibrium theory and
the simulation is remarkable. As a check on the quality of the
simulations, the relaxation time �E in the kinetic energy of
the heavy particle was also obtained by simulation. The ex-
pected result from the theory of Brownian motion is that 2�E

will be equal to the velocity relaxation time as is indeed
observed within nominal error bars.

4. Local quasiequilibrium limit

In Ref. 48, slowly relaxing systems, effectively at local
quasiequilibrium, are described on the basis of Onsager’s
fluctuation theory. Therein, the non-Markovian Fokker-
Planck equation for the conditional probability density,
P�� , t ;�0 , t0�, was shown to be

�P

�t
= 	

i,j

�

��i
Bij��,t,t0��Xj��,t�P +

kBT�t�
m

�P

�� j

 , �3.29�

where m is the particle’s mass; � = ��i� is the set of fluctuat-
ing variables and �0 are their values at time t0. The thermo-
dynamic forces, Xi, are defined through the quasiequilibrium
probability density Pqe as follows:

Xi��,t� = −
�

��i
� kBT�t�

m
ln Pqe��,t�
 . �3.30�

The coefficients, Bij, define the connection between the
stream velocities, v�i

, and the conjugate thermodynamic
forces,

v�i
= − 	

j

Bij�Xj +
kBT�t�

m

�

�� j
ln P
 , �3.31�

in accordance with the rules of nonequilibrium thermody-
namics. The temperature T�t� of the system is assumed to be
time dependent, but at a slow enough rate that the system
achieves local quasiequilibrium. This temperature is a func-
tion only of time and is expressed through that of the bath,
TB�t�, as

T�t� = A�t�TB�t� . �3.32�

The factor A�t� is defined via the thermodynamic functions
taking into account the energy exchange between the system
and the bath and is equal to unity when the process is revers-
ible.

Note that the factors A�t� and Bij�� , t , t0� are not speci-
fied within the approach of Santamaria-Honeck et al.,48 and
other methods must be used to obtain them. Thus, the
Brownian motion in a granular gas has been investigated
using a kinetic theory to calculate these factors.60 In this
case, the behavior of a particle is described through its ve-
locity, so that the stochastic variable has only one compo-
nent, �1� q̇. The factor A has been found to be constant
and identified through the restitution coefficient � as A
= �1+�� /2, and the single matrix element B11=A��t , t0�,
where ��t , t0� is the friction coefficient which depends only
on time.

The quasiequilibrium distribution is

Pqe � exp�−
mq̇2

2kBT�t�
 , �3.33�

and the Fokker-Planck Eq. �3.29� takes the form

�P

�t
=

�

� q̇
�B11�t,t0�q̇P� +

�2

� q̇2�B11�t,t0�
kBT�t�

m
P
 . �3.34�

It corresponds to the iLE of the general form Eq. �3.13�,

q̈ = − B11�t,t0�q̇ + ��t� , �3.35�

where the stochastic force correlation function is

���t���t��� = 2
B11�t,t0�

m
kBT�t���t − t�� . �3.36�

Thus, we once again find agreement between the current
framework and earlier work.

IV. CONCLUSION

In this article, we have presented a generalized construc-
tion for the effective temperature of a tagged particle con-
nected to an arbitrary number of time-dependent inhomoge-
neous reservoirs. It is in agreement with several limiting
cases described earlier by various authors.25,26,35,41,43,48 In
Ref. 35, it was shown by comparison between theory and
simulations that the Brownian diffusion of a tagged particle
�or probe� within swelling hard spheres at constant tempera-
ture can be surmised by an iLE. The latter is the memoryless
limit of the iGLE, when the memory kernel ��t , t�� is pro-
portional to the �-function, ��t− t��. The formalism presented
here is suitable for describing situations when the environ-
ment solvating a tagged particle is itself out of equilibrium.
The particle thus “experiences” different environments with
differing properties �say, temperature and viscosity� as it
moves in time.

The numerical simulation of a particle diffusing through
a gas that is somehow composed of three distinct tempera-
ture particle baths discussed in Sec. III C 3 is instructive.
Clearly, in the limit where the three baths can couple to each
other, they will equilibrate to the same average temperature.
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The chosen particle will likewise attain this equilibrium tem-
perature, which is also equal to the effective temperature
defined by Eq. �2.29� in this limit. The numerical gedanken
experiment provides the result for the opposite limit in which
the three baths are completely uncoupled to each other. The
perhaps surprising result to a naive observer, who incorrectly
assumes that this is an equilibrium process, is that the chosen
particle does not exhibit dynamics at the average temperature
of the three baths. Instead, the degree of coupling between
the baths and the chosen particle modulates the heat transfer
that goes between the distinct baths through the particle. The
effective temperature exhibited by the chosen particle, as
given by Eq. �2.29�, is precisely the mathematical form for
this delicate balance. The existence of energy flows through
the chosen particle would in the long time limit lead to the
re-equilibration of all the baths. However, when the baths are
large enough, such energy transfer is sufficiently small that it
does not change the temperatures of the baths. Thus, the
presence of a subsystem at an effective temperature unequal
to the average temperature of its nonequilibrium surround-
ings will be seen whenever the re-equilibration time of the
surroundings is much longer than the time scales of interest
in the subsystem.

Such behavior should be seen in solution chemistry in
which the solvent molecules undergo chemical reactions,
leading to a substantial �and possibly heterogeneous� change
in the solvation of the solutes. The differences between these
neighborhoods depend strongly on the differences between
the reactant and product solvent molecules. Moreover, the
energetics of the reactions may also lead to localized energy
losses or gains that would manifest themselves as tempera-
ture fluctuations. Although each of the solvent reservoirs
would not be as simply decomposable as in the gedanken
simulations of Sec. III C 3, they would nevertheless interact
with the solute heterogeneously leading to an effective tem-
perature as given by Eq. �2.29�.

Another illustration lies in the nonequilibrium dynamics
of colloidal microgel particles. The latter can change their
volume in response to the temperature or pH alteration of the
solution.13 In accordance with recent unpublished experi-
ments by Lyon,61 these colloids, being initially in a glassy
state, can form a liquid after decreasing their size or crystal-
lize when swelling. The generalization of the iGLE to incor-
porate temporal temperature changes thus extends our earlier
theory35 to account for the diffusion of particles in
temperature-dependent colloidal suspensions.
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APPENDIX A: DERIVATION OF EQUATION „2.23…

In this appendix, we sketch the derivation of the solution
of Eq. �2.20� quoted in the text as Eq. �2.23�. For simplicity,
all the indices associated with the various baths are omitted,
and consequently Eq. �2.20� takes the form

ẍ + 
�t�ẋ + �2�t�x = c
g��t�h�t�

�2�t�
q . �A1�

After the replacement,

x = uw , �A2�

the previous equation becomes

ẅu + 2u̇ẇ + 
�t�ẇu + w�ü + 
�t�u̇ + �2�t�u�

=
cg��t�h�t�

�2�t�
q , �A3�

which greatly simplifies �cf. Eq. �A16�� if only u satisfies the
auxiliary differential equation,

ü + 
�t�u̇ + �2�t�u = 0, �A4�

for the initial conditions

u�0� = 1, u̇�0� = 0. �A5�

The auxiliary function u in Eqs. �A4� and �A5� can be ob-
tained using the steepest descent approximation. The usual
substitution,

u = exp�S� , �A6�

leads to

Ṡ2 + �2�t� = − 
�t�Ṡ − S̈ . �A7�

Since the right-hand side �RHS� is a small quantity �
 and S̈
vanish if � and h are constant�, the zeroth-order approxima-
tion is determined entirely by �,

Ṡ0 = ± i��t� . �A8�

Substituting Ṡ0 into the RHS of Eq. �A7�, we obtain a differ-
ential equation for the first-order correction, S1,

Ṡ1
2 + �2�t� = − 
�t�Ṡ0 − S̈0. �A9�

Using the definitions �Eq. �2.21�� of 
 and �, the solution for

Ṡ1 can be written, after some algebra, as

Ṡ1�t� = ± i��t��1 ±
i

��t�
d

dt
ln���t�h�t�� . �A10�

In the case of an adiabatic change of parameters ��t� and
h�t�, the inequality

� d

dt
ln���t�h�t��� = � �̇

�
+

ḣ

h
�� ��t� �A11�

is satisfied. Therefore,

Ṡ1�t� � ± i��t� −
1

2

d

dt
ln���t�h�t�� , �A12�

and

S1�t� � ± i�
0

t

��t��dt� − ln���t�h�t� . �A13�

The two complex solutions for u, each found by substitution
of Eq. �A6� by Eq. �A13�, can now be combined to ensure
that the initial conditions in Eq. �A5� are satisfied, leading to
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u�t� �
cos ���t�
���t�h�t�

, �A14�

where

��t� �
1

�
�

0

t

��t��dt� = �
0

t h�t��
��t��

dt�, �A15�

and the approximation is satisfied according to the inequality
in Eq. �A11�. This now leads to the desired intermediate
differential equation in the unknown auxiliary function w,

ẅ + 2
u̇�t�
u�t�

ẇ + 
�t�ẇ =
cg��t�h�t�
u�t��2�t�

q�t� �A16�

with the initial conditions

w�0� = x�0�, ẇ�0� = ẋ�0� , �A17�

which follow from Eqs. �A2� and �A5�.
Equation �A16� can be manipulated further using the

substitution

ẇ � ab , �A18�

leading to a new differential equation,

ȧb + a�ḃ + 

�t� + 2
u̇

u
�b
 =

cg��t�h�t�
u�t��2�t�

q�t� . �A19�

This expression simplifies if only b is chosen to satisfy the
auxiliary differential equation,

ḃ + 

�t� + 2
u̇�t�
u�t�

�b = 0, �A20�

which gives rise to the solution

b�t� =
b�0�

�u�t���t��2 . �A21�

After substitution, Eq. �A19� reduces to

ȧ =
cg��t�h�t�

b�0�
u�t�q�t� . �A22�

The solution of Eq. �A22� is

a�t� = a�0� +
c

b�0��0

t

g��s�h�s�u�s�q�s�ds . �A23�

The result for w can now be obtained by multiplying Eqs.
�A21� and �A23�, leading to

ẇ = a�t�b�t� =
a�0�b�0�

�u�t���t��2

+
c

�u�t���t��2�
0

t

g��s�h�s�u�s�q�s�ds .

�A24�

From the initial conditions in Eq. �A17�, it follows that
ẋ�0�= ẇ�0�=a�0�b�0�. Hence,

w�t� = x�0� + ẋ�0��
0

t dt�

�u�t����t���2

+ �
0

t cdt�

�u�t����t���2�
o

t�
g��s�h�s�u�s�q�s�ds . �A25�

The desired solution of Eq. �2.20� quoted in the primary text
as Eq. �2.23� now follows from Eqs. �A2�, �A14�, and �A25�.

APPENDIX B: PROJECTION OF MULTIPLE-BATH
HAMILTONIAN ONTO THE iGLE

In this appendix, we rederive the iGLE projection shown
earlier in Ref. 20 for the extended case of multiple discon-
nected baths that is of interest to this work.

Substitution of Eq. �2.23� into Eq. �2.19d� gives

q̈ = 	
i

cigk��t�hk�t�ui�t�xi�0� + 	
i

cigk��t�hk�t�ui�t�ẋi�0�

��
0

t dt�

�ui�t���k�t���2 �B1a�

+ 	
i

ci
2gk��t�hk�t�ui�t��

0

t dt�

�ui�t���k�t���2

��
0

t�
gk��s�hk�s�ui�s�q�s�ds �B1b�

−
�V�q�

�q
− 	

i

 cigk��t�

�i
�2

q −
�

�q
�V2�q�·�,t� , �B1c�

where we use the notation i ��i ,k� as in the text, and the
summation over i includes all the bath modes in all the res-
ervoirs, i.e., 	i�	k	i�. The second line �Eq. �B1b�� can be
rewritten as

X = 	
i

ci
2gk��t�hk�t�ui�t��

0

t

gk��s�hk�s�ui�s�q�s�ds

��
s

t dt�

�ui�t���k�t���2 , �B2�

after a change in the order of integration, i.e., by noting that

�0
t dt��0

t�ds=�0
t ds�s

tdt�. The inner integral—appearing also in
the first line , Eq. �B1a�—can be found readily with the help
of the substitution d�k�= �hk�t�� /�k�t���dt� �cf. Eq. �2.25��,

�
s

t dt�

�ui�t���k�t���2 = �
s

t hk�t��/�k�t��
cos2��i�k��

dt�

= �
s

t d�k�

cos2��i�k��

=
1

�i
�tan �i�k�t� − tan �i�k�s�� . �B3�

Insertion of this result in Eq. �B2� and substitution of ui�t�
according to Eq. �2.24� gives
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X = 	
i

ci
2gk��t�hk�t�

cos �i�k�t�
��k�t�hk�t�

· �
0

t

gk��s�hk�s�
cos �i�k�s�
��k�s�hk�s�

q�s�
tan �i�k�t� − tan �i�k�s�

�i
ds

= 	
i

ci
2gk�t�

�i

hk�t�
�k�t�

�
0

t

gk�s�
hk�s�
�k�s�

q�s�sin �i��k�t� − �k�s��ds

= 	
i

ci
2hk�t�

�i
2�k�t�

gk�t��
0

t

gk�s�q�s�d cos �i��k�t� − �k�s�� , �B4�

where gk��t� has also been expanded according to Eq. �2.12�. Integration by parts leads to

X = − 	
i

ci
2hk�t�

�i
2�k�t�

gk�t��
0

t

cos �i��k�t� − �k�s��gk�s�q̇�s�ds + 	
i

 cigk��t�

�i
�2

q

− 	
i

ci
2hk�t�

�i
2�k�t�

gk�t�q�0�cos �i�k�t� − 	
i

ci
2hk�t�

�i
2�k�t�

gk�t��
0

t

cos �i��k�t� − �k�s��ġk�s�q�s�ds . �B5�

Substitution of the results of Eqs. �B3� and �B5� into the differential Eq. �B1� for q leads to

q̈ = −
�V�q�

�q
− �

0

t

��t,t��q̇�t��dt� + ��t� − 	
i

ci
2hk�t�

�i
2�k�t�

gk�t��
0

t

cos �i��k�t� − �k�s��ġk�s�q�s�ds −
�

�q�t�
�V2�q�·�,t� , �B6�

��t,t�� = 	
i

ci
2

�i
2

hk�t�
�k�t�

gk�t�gk�t��cos �i��k�t� − �k�t��� , �B7�

��t� = 	
i

ci

�i

hk�t�
�k�t�

gk�t�
pi�0�sin �i�k + 
�ixi�0� −
ci

�i
q�0��cos �i�k� . �B8�

Taking the derivative ���V2� /�q with the help of the Euler-
Lagrange variational principle and ignoring the higher-order
contributions from the nonstationary memory correction, as
suggested by Ref. 35, one sees that this derivative coincides
with the formal differentiation of Eq. �2.4� in q�t�,

�

�q�t�
�V2 = − �

0

t

dt�a�t,t��q�t�� , �B9�

with a�t , t�� from Eq. �2.13�, and the last two terms in Eq.
�B6� cancel each other.
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