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Abstract 
In this paper we consider the classification of dispersive linearizable partial 
difference equations defined on a quad-graph by the múltiple scale reduction 
around their harmonic solution. We show that the Ai, A2 and A3 linearizability 
conditions restrain the number of the parameters which enter into the equation. 
A subclass of the equations which pass the A3 C-integrability conditions can 
be linearized by a Móbius transformation. 
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Mathematics Subject Classification: 34E13, 37K10, 39A14, 93B18 

1. Introduction 

Calogero in 1991 [2] introduced the notion of S and C integrable equations to characterize 
those nonlinear partial differential equations (PDEs) which are solvable through an inverse 
scattering transform or linearizable through a change of variables. Using the multiscale 
reductive technique he was able to show that the nonlinear Schródinger equation (NLSE) 

idtu = K2[u] = dxxu + P2\u\ u, u = u(x,t) (1) 

appears as a universal equation governing the evolution of slowly varying packets of quasi-
monochromatic waves in a weakly nonlinear media featuring dispersión. The necessary 
conditions for the S-integrability is that p2 is real. If, however, the equation is linearizable 
then p2 must be nuil, the equation has to be linear or linearizable, as the Eckhaus 
equation [4,20]. 

By going to a higher order in the expansión, the multiscale techniques have been used 
to find new S-integrable PDEs and to prove the integrability of new nonlinear equations 
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Figure 1. The Z square-lattice where the equation Q = 0 is defined. 

[7, 8, 13]. Probably the most important example of such nonlinear PDE is the Degasperis-
Procesi equation [6]. The application of this test to the case of linearizable equations has 
not been done yet. However, Calogero and collaborators constructed many interesting 
linearizable nonlinear evolution equations by applying complicated transformations to linear 
equations [3, 5]. 

In the case of discrete equations it has been shown [1, 9-11, 16-19, 24] that a similar 
situation is also true. One can present the equivalent of the Calogero-Eckhaus theorem stating 
that a nonlinear dispersive PDE will not be S-integrable if its multiscale expansión on analytic 
functions will not give rise to an integrable NLSE at the lowest order. Moreover, it was shown 
on examples that a nonlinear PDE will be C-integrable if its multiscale expansión on analytic 
functions will give rise to a linear PDE [23]. 

As was shown in [10, 11, 17], the introduction of múltiple scales on a lattice reduces the 
given discrete equation either to a local nonlinear PDE, by imposing a slow-varying condition, 
or to a PDE of infinite order when dealing with analytic functions. Here we choose the second 
alternative because, as shown in [10, 11], only in this case are the integrability conditions of 
the discrete equation preserved. 

In this paper we provide necessary conditions for the linearizability of a class of real 
difference equations in the variable u : 1? -> R and its three nearest neighbors defined on a 
Z2 square-lattice (see figure 1) 

^¿\Mn,m> Un+\m, Unm+\, Un+\m+\\ p\, p2, . . .) — U, (2) 

where /3¿'s are the real parameters. Linearizability conditions will be determined through the 
múltiple scale perturbative development. 

We will suppose that equation (2) is linear affine in every variable, and our classification 
will be carried out up to the simultaneous Móbius transformations 

\^un,m + ") j (L.Unm + D). (3) 

In section 2, we will briefly discuss the múltiple scale expansión for equation (2) and 
present the integrability conditions which ensure that the given equation is a C-integrable 
equation of j order, with j = 1, 2, 3, i.e. it is such that asymptotically satisfies the C-
integrability conditions up to third order. In section 3, we apply them to the equation (2) and 
present a sequence of theorems which give the conditions on the constants /9¿ 's under which 
the system is Ai, A2 or A3 integrable. At the end we present some conclusive remarks. 



2. Expansión of real dispersive partial difference equations 

We now briefly illustrate all the ingredients of the reductive perturbative technique necessary 
to treat difference equations, as presented in [9, 10]. We will consider here the multiscale 
expansión in the case of analytic functions so as to preserve the linearizability of the given 
equation. 

Introducing múltiple lattice scales, under some obvious hypotheses on the C(oo) property 
of the function w„jm and on the radius of convergence of its Taylor expansión for all the n and 
m shifts involved in the difference equation (2), we can write a series representation of the 
shifted valúes of u„tin around the point (n, m). Choosing 

«¿ =£„.«, £n.=Ni£l, l^i^K„, 

trij = sm.m, sm. = Mj£J, 1 < i < Km, 

where the various constants N¡, M¡ and e are all real numbers and we will assume K„ = 1 and 
Km = K (eventually K = +oo), the total shift operators T„, Tm can be rewritten in terms of 
partial shift operators T„, Tm as 

j 

Tn = %T„y = % J>M^, Aü ) = -J^, (4a) 

K +co 

T T — TT T(Sni) T~\T(£mj) — TT Y^p jA ( j ) (4c) 

and in terms of differential operators Am , A„m. These operators are given by appropriate 
combinations of -^-d]

mt (explicit expressions and formulae can be found in [9], see [22] for 
more details). We can assume for the function w„m = u(n, m, n\, {nij}j=1, e) a double 
expansión in harmonics and in the perturbative parameter e 

+00 y 

u„,m =J2J2 eVUV\numj,j > l)e^
h"-^">\ (5) 

Y=19=-y 

with uY~9)(n\, nij, j > 1) = ü^(n\, m¡, j > 1) in order to ensure the reality of w„jm. Then, 
inserting the explicit expressions (4) of the shift operators in terms of the derivatives with 
respect to the slow variables, equation (2) turns out to be a PDE of infinite order. Moreover, 
we require the functions u^] to satisfy the asymptotic conditions limni^±O0 u^] = 0, Vy and 
9, and the index y chosen > 1 in order to let any nonlinear part of equation (2) to enter as a 
perturbation in the multiscale expansión. 

2.1. The orders beyond the Schródinger equation and the C-integrability conditions 

The múltiple scale expansión of a nonlinear PDE on analytic functions will thus give rise 
to continuous PDEs. So a múltiple scale linearizability test will require that an equation 
is C-integrable if its múltiple scale expansión will go into the hierarchy of the Schródinger 
equation. To show this we need to consider the orders beyond that at which one obtains 
for the harmonic u\' the Schródinger equation. References [7, 12, 14, 15] contain different 
approaches to the higher order multiscale expansión of S-integrable nonlinear PDE's. 



Following [7] we can remove all secular terms from the reduced equations order by order 
and thus, in agreement with Degasperis and Procesi [8], we can state the following fheorem 
pro ved by Procesi [21]. 

Theorem 1. A nonlinear dispersive partial difference equation is C-integrable only if its 
multiscale expansión is given by a uniform asymptotic series such that 

(1) the amplitude uf} evolves at the slow-times ma, a > 2 according to the ath equation of 
the linear Schródinger hierarchy: 

d m ^ = (-t)b>-»Baa*lU?\ Ba = ~ ^ - , (6) 

where Ba are constants; 
(2) the amplitudes of the higher perturbations of the first harmonic Uj , j > 2 evolve at 

the slow-times ma, a > 2 according to certain linear, nonhomogeneous equations when 
taking into account the proper asymptotic boundary conditions: 

dmauf - {-i){a-l)Bad
a
nuf = Mauf = MI), (7) 

V j , a > 2, where Bad^u[> is the athflow in the linear Schródinger hierarchy (6). All 

the other Uj , 9 > 2, are expressed in terms of differential monomials ofu^\ p < j . 

If the asymptotic expansión is, besides a necessary condition for integrability, also a 
sufflcient condition, has been only conjectured in [21]. The proof of the theorem takes into 
account that for a C-integrable equation by deflnition we have a linearizing transformation. 
The next step is to assume that the function satisfying the linearized equation admits a similar 
perturbative expansión as in (5) and then to perform a multiscale analysis of the linearizing 
transformation. 

In equation (7), fa(j) is a nonhomogeneous nonlinear forcing term and Ba, a > 1, 
introduced in equation (6) are the complex constants. Equation (6) represents a hierarchy of 
compatible evolutions for the function u\ . It is obvious that the operators Ma deflned in 
equation (7) commute among themselves. Thus, once we flx the index j > 2 in the set of 
equations (7), their compatibilities imply the following conditions: 

MaU (j) = Ma, fa (j), V a, a' > 2, (8) 

where as fa(j) and fa'(j) are functions of the different perturbations of the fundamental 
harmonic up to degree j - 1, the time derivatives dta, dta, of those harmonics appearing 
respectively in Ma and Ma, have to be eliminated using the evolution equations (6) and (7) up 
to the index j - 1. The commutativity conditions (8) turn out to be an integrability test. 

To construct the functions / j we define homogeneous spaces of functions of uj~\ its 
«i-derivative and its complex conjúgate. 

Deflnition 2.1. A differential monomial p[u(p], j > 1 in the functions uj\ its complex 
conjúgate and its n\-derivatives is a monomial of 'gauge' 1 ifitpossesses the transformation 
property 

p[üf] = ^p[uf], r,a)i_^r,.a)i üf=¿euf. 
Deflnition 2.2. A finite dimensional vector space Vv, v > 2 is the set of all differential 
polynomials in thefunctions Uj , j > 1, their complex conjugates and their n\-derivatives of 
order v in e and gauge 1 such that 

order(d^ uf) = order(d^ üf) = fi + j , / O 0. 



Definition2.3. Vv(n), \x > 1 andv ^ 2isthesubspaceofVv whose elementsaredifferential 
polynomials in the functions ujh, their complex conjugates and their ni-derivatives oforder 
v in e and gauge 1 for 1 < j < /x. 

The basis monomials of the spaces 7>„(/x) can be found, for example, in [22]. 
The functions fa(j) belong to a well deflned-flnite dimensional space 7>„ (/-<-) and if 

relations (8) are satisfled up to the index k,k^2, we say that our equation is asymptotically 
C-integrable of degree k or Ak C-integrable. 

2.2. C-integrability conditions for the Schródinger hierarchy 

In this subsection we present the conditions which must be satisfled for the asymptotic 
C-integrability of order k or the Ak C-integrability conditions with k = 1,2,3. To simplify the 
notation, we will use for u(p the concise form u(j). 

The Ai C-integrability condition is given by the absence of the coefflcient p2 of the 
nonlinear term in the NLSE. 

The A2 C-integrability condition is obtained by choosing j = 2 in the compatibility 
conditions (8) with a =2 and a' = 3: 

M2f3Ü) = M3f2(j), (9) 

where M2 = 3m2 + \B2d
2

ni and M3 = dm + B ^ . 
In this case /2(2) e V4(l) and /3(2) e V5(l) with dimOP4(l)) = 2 and dimOP5(l)) = 5, 

so that f2 (2) and f3 (2) will be respectively identifled by two and flve complex constants 

f2{2) = auni{\)\u{\)\2 +büni{\)u{\)\ (10a) 

M2) = a\u(l)\4u(l) + p\uni(l)\
2u(l) + Yuni(l)

2ü(l) 

+5S„1„1(l)M(l)2 + e|M(l)|2M„1„1(l). (106) 

In this way, eliminating from equation (9) the derivatives of w(l) with respect to the slow-
times m2 and m3 using evolutions (6) with a = 2, 3 and equating term by term, we obtain 
that the A2 C-integrability conditions give no constraint for the two coefflcients a and b. As a 
consequence one can say that the Ai C-integrability condition p2 = 0 automatically implies 
A2 C-integrability, or that it indeed represents an A2 C-integrability condition. The expression 
of a, p, y, 5, e in terms of a and b are 

3iB3b 3iB3a 
a = 0, B = —, v = —, 5 = 0, e = v, (11) 

P B2
 Y 2B2

 r ' 
where, for convenience, from now on we will write B for B3. 

The A3 C-integrability conditions are derived in a similar way setting j = 3 in 
equation(9). In this case wehave that f2 (3) e 7>5(2)and/3(3) e V6(2) withdim(7,

5(2)) = 12 
and dim(7,6(2)) = 26, so that /2(3) and /3(3) will be respectively identifled by 12 and 26 
complex constants 

/ 2 (3) = Ti |M( l) |4
M( l) + T2 |M„1(l)|2

M(l) + T3 |M(l)|2
M„1„1(l) + T4S„1„1(l)M(l)2 + T5M„1(l)2S(l) 

+ r6uni(2)\u(l)\2 + r7üni(2)u(V)2 + T 8 K ( 2 ) 2 S ( 1 ) + r9\u(2)\2u(l) 

+ Tiow(2)wni(l)5(l) + Tuu(2)üni ( 1 ) Í Í ( 1 ) + ti2ü(2)uni ( 1 ) Í Í ( 1 ) , (12a) 

/3(3) = y i K D l V d ) + y2 |M(l)|2
M(l)2Sni(l) + K3|M(l)|2Mni„ini(l) 

+ YAu(X)2üninini (1) + y5|¡íni (l)|
2wni (1) + y6ünini(l)uni(l)u(l) 



+ Y7U„ini(l)üni(l)u(l) + Y%u„ini(l)uni(l)ü(l) + y9\u(l)\4u(2) 

+ yw\u(l)\2u(l)2ü(2) + yuüni(l)u(2)2 + yuuni(l)\u(2)\2 + yl3\uni(l)\
2u(2) 

+ yu\u(2)\2u(2) + yi5uni (l)2w(2) + yi6\u{\)\2 u„ini (2) + ynu(l)2ü„ini (2) 

+ K I 8 « ( 2 ) S „ 1 „ 1 ( 1 ) Í Í ( 1 ) + yi9«(2)«„1„1 ( l )S( l ) + y2oS(2)íí„ i n i(l)íí(l) 

+ y2iu{2)uni{2)ü{\) + y22Ü{2)uni{2)u{\) + y2iuníi{2)uni{\)ü{\) 

+ y2AUni{2)üni{l)u{\) + y25Ünii{2)uni{l)u{l) + y26üni{2)u{2)u{\). {12b) 

Let us eliminate from equation (9) with j = 3 the derivatives of w(l) with respect to the 
slow-times m2 and m3 using evolutions (6) respectively with a = 2, 3 and the same derivatives 
of w(2) using evolutions (7) with a = 2, 3. Equating the remaining terms, term by term, the 
A3 C-integrability conditions turn out to be 

i _ 1 
ti = - —— [b ( t u - 2 T 6 ) + at-i], br-i = - (b - a) (tn + tw - T6) + ar 7 , 

4/>2 2 

ax% = bx% = 0, atg = bx9 = 0, 5Ti2 = a (TÍO — Tu) +br¿ +ár-¡, *• -* 

(fe - 5)Ti2 = (fe -a)rw. 

Sometimes a and fe turn out to be both real. In this case the conditions given in equations (13) 
become 

Ri = —[b (In - 2/6) + ahí, h = - 7 5 - [b (Rn - 2R6) + aR71, 
4/Í2 402 

(b - a) (Rn + Rio -Re- 2/Í7) = 0, (b - a) (In + ho - k ~ 2/7) = O, 

(b-a)R& = 0, (b-a)h = 0, (b - a) R9 = O, (b - a) I9 = O, ( 1 4 ) 

a{Ru + Rn - Rio - #7) = bR6, a{Iu + Iu - Iw - h) = bl6, 

(b - a)(R12 - Rl0) = 0 , (b - a)(I12 - 710) = O, 

where x¡ = Rj + i/,- for ;' = 1 , . . . , 12. The expressions of the y¡ as functions of the T¿ are 

3B3 - 3B3 

Yi = —riató - 4ifi2Ti + bru), Yi = -—j (br6 + a r 7 ) , 

3ÍB3T3 3Ífi3T2 

y3 = , YA = 0, 1/5 = , 
Y 2B2

 Y Y 2B2 

31B3T4 3iB3t5 
Ye = = — ' y1 = ^5 ' K8 = K3 = — ' ^9 = ° ' ^10 = °' 

£>2 D2 

3Ífi3T9 3Ífi3Tn 3Ífi3Ti2 
K n = 0 , K12 = — — , Yis = 7T¿—, Yi4 = 0, Yi5 = ——, 

¿D2 ¿D2 ¿D2 

3Ífi3T6 3Ífi3Tio 
y^ = — T B ~ ' ^i7 = ^i8 = °' yi9 = — ™ — ' 

¿t>2 ¿t>2 

3Ífi3T8 

K20 = K15, K21 = — , 
B2 

3Ífi3T7 
K22 = Kl2, K23 = Kl6 + Kl9, K24 = Kl3, K25 = " , K26 = 0. 

m 
The conditions given in equations (13) and (14) appear to be new. Their importance resides 
in the fact that a C-integrable equation must satisfy fhose conditions. 



3. Dispersive affine-linear equations on the square lattice 

In this section we derive the necessary conditions for the linearizability of a dispersive and 
homogeneous affine-linear equation deflned on the square lattice and belonging to class (2). 
The most general multilinear equation of class (2) has at most quartic nonlinearity. Let us 
introduce into its linear part the solution w„jm = Kní2m where K = e1K and Í2 = er10)<-K\ We 
get that this equation is dispersive if homogeneous and written as 

Q ± = a\{un,m ± Wfl+l,m+l) + «2(Wfl+l,m ± «n ,m+l) 

+ («1 +012) U n ,m+\U n+\ ,m+\ 

+ ( A — Pl) un,mU„,m+l + (fil + fí2) «n+l ,m«n+l,m+l 

* Y\Un,mUn+\,m+\ * Y2^n+l,m^n,m+l 

' VSl 9 3 / ^n,m^n+l,m^n,m+l ' VSl "•" S 3 / ^n,m^n+l,m^n+l,m+l 

+ VS2 S4/ ^n+l,m^n,m+l^n+l,m+l + VS2 + S4/ ^n,m^n,m+l^n+l,m+l 

* QUnmUn+\mUnm+\Un+\m+\ — U, v ^ J 

where ai, 02 e R \ {0}, \a\\ ^ |«2U WQ the coefflcients appearing in the linear part while 
a\,a2, j3\, j32, Yi,Y2, fi, - - -, §4, ¿T are eleven real parameters to be determined by using the 
multiscale procedure described in section 2. The linear dispersión relation is given by 

(a\ — afj sin K 
CO(K) = arctan 

(a2 + a|) eos K + 2aia2 
(16) 

Let us look for those transformations which leave the class of equations Q± invariant. 
They will give the equivalence conditions for our elassifleation. It is well known that 
polynomial equations are invariant under simultaneous Mobius transformations w„jm i-> 
(Au„¡m + B)/(Cu„¡m + D). However, our class of equations is homogeneous with a restriction 
on the coefflcients of the linear part. After a Mobius transformation a constant term 

a0 = B\ + 2B3D(^ + £2) + B2D2[Y\ +y2 + 2(«i + A)l + 2BD3{ax + a2) (17) 

will appear, and thus, if we do not want to restrict the coefflcients of the equation, we have to 
set B = 0 to have a0 = 0. Under the Mobius transformation with B = 0 the coefflcients of 
Q± become 

a\ h-> D3a\, a2 H> D3a2, a\ h-> D2[a\ +C(a\ + a2)], a2 h-> D2a2, (18) 

fc^ D2[p1+C(a1+a2)], p2^D2p2, (19) 

Y\ H> D2(y1+2Ca1), y2 i-> D2(y2 + 2Ca2), (20) 

£i ^ D^1 + ÍCD[3C(a1+a2) + y1 + y2 + 2(a1 -a2+Pi)], (21) 

h H> D%2 + jCD[3C(ai + a2) + yi + y2 + 2(«i + a2 + ft)], (22) 

£ H- 0£> + 5CÍ>[C(ai - a2) + yi-y2+ 2fo\, (23) 

& M- D& + ^CD[C(ai - a2) + Ki - Yi - W2I (24) 

f H* f + C2[2C(ai + a2) + yi + y2 + 2(c*i + A)l + 2C& + &)• (25) 

So our equivalence transformation with respect to which we will be classifying the equation 
Q± is a restricted Mobius transformation of the form w„jm i-> un,m/(Cun,m + D). 

In this paper we limit ourselves to consider the case of Q+. The case Q_ will be dealt 
with in a subsequent publication. 



Imposing that p2 = O we get he following proposition. 

Proposition 1. The lowest order necessary conditions for the linearizabüity ofequations Q+ 
give six different classes ofequations characterized by different non-superimposed ranges of 
valúes ofthe coefficients ofthe equation Q+. They are 

• caseLl: 
rQ'2 = p12=0, ai=Pu yi + y2=2pu 

k — k — (a\+ai)1Y\Yl+('ia\-2a1)a1yiPi-ai(2ai-Za1)Yifi\ 
5 1 ? 2 4aia2(ai+a2) ' ( 2 6 ) 

— (ai—a2)(ai+a2)2yiy2—a2 [ — a2 — 5a2a\+2a2)y\fi\+a\ í 2a\—5a2a\ — a2)y2^l 

t 53 54 4a\a2(a\+ci2)2 

• case L2: 

ü!2 = p1
2 = 0, ai=f¡i, (3ai — 2a2)a|yi + a2(2ai — 3a2)y2 = 4ai(ai — a2)a2/Si, 

(a\ + a2)[a2y2 — a2y2
2) + 2«2 í a2 — 2a2]y\fii+2a\ [2a2 — a2\y2^\ — 6a\(a\ — a2)a2@2 

Aa\a2 [a2 —a2) 
%l=%2 

, _ , _ 2a1a2(ai + a2)(yi -rúfii + (ai - aiKaiYí - aiY2)2 + 2a1a2(a2 - ai)fi2 

53 54 Aa\a2(a\ + a2)2 

• caseL3: 

h = 'TÍH £ 

(27) 

(28) 

(29) 

2 1 
oi2 = P2=0, ai=2a2, Y\ = x(«i + P\), Y2 = x(«i + Pi), 

-5OH0Í+a¡+p¡ (a1-2p1)(2a1-p1) 
51 = 52 = , 53 = 54 = — • 

6a2 18a2 

• case L4: 

1 2 
«2 = j82=0, 2 a i = a 2 , Ki = - (« i + P\), Y2 = -(a\+P\), 

. . SarPr+al+Pl (ar-2pl)(2al - pr) 
51 = 52 = , 53 = 54 = — • 

oai loai 
• case L5: 

2px Apx 

a2 = P2, OÍI=PI, 2ai=a2, Ki = — , K2 = — , 

= 3/J1
2-2/J2j31+/J2

2 ^ = 3P¡ + 2P2P1+Pl ( 3 0 ) 

6ai ' 6Ú¡I 

<. _ _fi¡-6hli+2É, k - fi2+6ft/6i+7/62
2 

-53 18ai ' ? 4 18ai 

• case L6: 

4Pi 2Pi 
0(2 = -P2, a\ = P\, a\= 2a2, Y\ = - j - , K2 = - r - , 

ift + lfofr+fi , 3P¡-2p2p1+p2
2 

51 = 7 52 = , (31) 
0(22 6<22 

ft2 + 6)82)81 + 1P\ . P\ - 6P2P1 + 1P\ 
4 

18a2 18a2 



The corresponding six subclasses of equations are invariant under restricted Mobius 
transformations oftheform u„ i-> u„/(Cu„ + D). 

Proof. Following the procedure described in section 2 we expand the flelds appearing 
in equation Q+ using deflnitions (5) (4). The lowest order necessary conditions for the 
integrability of Q+ are obtained at the order e3 of the múltiple scale expansión. At this order 
we get the m2-evolution equation for the harmonic u\ , that is in general a NLSE of the form 

id^uf1 -B2d
2
nuf - p2uf\u{^f = 0, where, n2 = n1-—m1, (32) 

where the coefflcients B2 and p2 will depend on the parameters of the equation Q+ and on the 
wave parameters K and co, with &> expressed in terms of K fhrough the dispersión relation (16). 

Let us give just a sketch of the construction of equation (32), omitting all intermedíate 
formulae. At 0(e) we get 

• for 9 = 1 a linear equation which is identically satisfled by the dispersión relation (16); 
• for 9 = 0 a linear equation whose solution is uf} = 0. 

. 2 

• 

At 0{s¿), taking into account the dispersión relation (16), we get 

for 9 = 2 an algebraic relation between w!,2) and uf}; 
• for 9 = 1 a linear wave equation for u[ , whose solution is given by u[ («i, ni\, m2) = 

uf\n2, m2), with n2 given by equation (32); 
• for 0 = 0 an algebraic relation between uf} and uf\ 

Let us stress here that at 0(e2) we flnd that all the harmonics will depend on the slow-variables 
«i and ni\ fhrough n2. 

At C(e3), for 9 = 1, by using the previous results, one gets the NLSE (32) with 

a\a2{(£ — ai) sin/c 
Bi = -—--Y— 3 ' P2 = nl+m2, 

[af +Ü2+ 2a\a2 eos K) 

where 

sin K [^í0) + K(}} eos K + Kf} eos2 K + K?} eos3 K + K(?} eos4 K] 
Til = l-^ ± l— l- l- i—, (33) 

(a\ + a2)(a
2 + a2 + 2aia2cosic) [(ai — a2)

2 + 2a\a2 cos/c(l + cos/c)] 

nf} + K(y eos K + nf] eos2 K + nf} eos3 K + llf eos4 K + TZ^} eos5 K 
1Z2 = —? 2- 2- Y • ( 3 4 ) 

(ai + a2)(a
2 + a\ + 2aia2COSA:) [(ai — a2)2 +2aia2 COS/c(l + cos/c)] 

Here the coefflcients TZ((\ 0 < i < 4 and TZ^\ 0 < i < 5 are the polynomials depending on 
the coefflcients ai, a2, a\, a2, B\, B2, y\, y2, % i, • • •, HA and fheir expressions are cumbersome, 
so that we omit them. 

Note that B2 is a real coefflcient depending only on the parameters of the linear part of Q+, 
while p2 is a complex one. Henee, the linearizability of the NLS equation (32) is equivalent 
to the request p2 = 0 VK, that is, 

nf = 0 , 0 < i < 5, j = 1, 2. (35) 

Equation (35) is a nonlinear algebraic system of eleven equations in twelve unknowns, the 
coefflcient f not appearing at this order of the múltiple scale expansión. By solving it with 
the help of the computer algebra software Mathematica one gets solutions (26)—(31). These 
solutions are computed taking into account that a\,a2 e R \ {0} with \a\ \ ̂  |a21. Let us point 
out that the equations have been solved using only rational algebra, avoiding the unreliability 
of computer algebra calculations when using irrational functions. 



One flrst solves the six equations corresponding to K. (i) 0, 0 < i ^ 5. Two of fhem 
can be solved for fi and ¿3 in (rational) terms of the remaining ten coefflcients. The resulting 
system of equations turns out to be fy--independen t and linear in the four variables a\, j3\, 
Y\ and y2. Therefore, we may write the remaining four equations as a matrix equation with 
coefflcients nonlinearly depending on a2, 02, ci\ and a2. The rank of the matrix is three. 
Solutions (26)—(31) are obtained by requiring that the matrix be of rank 3, 2, 1 and 0. In this 
way we get 

Case 1: 

Case 2: 

Case 3: 

Case 4: 

Case 5: 

Case 6: 

«2 

h, 
o, 

h 

«2 = 02, 

ai = 2a2, 

Y\ = 2y2, 

«i(fi ~h) 

«2 = -02, 

a2 = 2ai, 

K2 = 2yi, 

«i(fi ~h) 

«1 =0i, 

-«i(fe ~HA) = -2a2y2-

«1 =0i, 

ai(l¡3 - f 4 ) = -Q!2Ki-

(36) 

(37) 

(38) 

«1 = 01 = ¿ ( l +«l/«2)K2, 
fl2Ki = aiy2, 

«i(fi - & ) = -«2X1, 

ai(& - § 4 ) = J82K1-

(a2 - ai)P2 = (a2 + ai)a2, 

2a\a2{a\ — a2)a\ = (a\ + a2)(y2a\ 

2a\a2P\ = Y\a\ + y2a\, 

(a2 - a i ) ( f i - f 2 ) = 

(a2 - a i ) 2 fe - §4) 

(39) 

(Kl - K2)«2, 

= [K2O22 - 3 a i ) 

KiajJ 

Ki(ai - 3a2)]a2. 

(40) 

(a2 + ai)/32 = («2 - ai)a2, 

2a\a2a\ = Yia
2 + K2ai > 

2aia2(ai - a2)P\ = (ai + a2)[y2a\ 

(a\ - a 2 ) ( f i 
(ai +a2)(^3 

-h) 
• & ) = 

= [Ki(ai - 3a2) 

(K2 - Kl)0!2-

" K2(fl2 

(41) 

•3ai)]cü2, 

Then we impose the remaining flve equations K (i) 0, 0 < i < 4 to each of the six 
obtained solutions (36)-(41). By a straightforward computer aided computation we conclude 
that case 1 has four subcases, cases (26)-(29), that pass those conditions while case 4 has 
two subcases (30) and (31). All the other cases provide only subcases of the six solutions 
L1-L6. Cases 1 and 4 represent the necessary and sufficient conditions for the coefflcients a 



^r¿,m + l «1 + «2 Un+l,m + l 

01 -fa 

a.\ — «2 

/?l + /?2 

^ra+l,m 

Figure 2. Representation of the quadratic nonlinearities of Q±. 

and b in (10a) to be real. A direct calculation proves invariance of the resulting equations with 
respect to the reduced Mobius transformation. Let us stress again that cases (26)—(31) are A2 

C-integrable. D 

As a consequence of this proposition we can state the following obvious but important 
corollary. 

Corollary 1. Ifthe coefflcients a\, a2, «i, a2, P\, P2, Yi,Y2, fi, - - -, f4 of equations Q+ do 
not satisfy the conditions in equations (26)-(31) then Q+ is not linearizable. 

Note that the trivial linearizability condition a\ = a2 = P\ = p2 = Y\ = Yi = % i = h = 
f3 = ^4 = 0 is contained in equations (26)—(31) (cases Ll to L6). 

A particularly interesting case is when we consider an equation with at most quadratic 
nonlinearity (see figure 2). In this case we get the following proposition. 

•3 = f4 = 0 in equations Q+, then the lowest linearizability 

0, ofi = Pi, 1a\ — la2a\ + 2a| = 0 •<=>• a\ 

P2 = 0, «i = Pi, Aa\ — Yla2a\ + 9a|aj — Yla\a\ + 

Proposition 2. If f i = f 2 = f3 = f4 
conditions are the following. 

• Cases QLla and QLlb: a2 = p2 = u, «i = p\ 

\{1 ± V33)a2, Ki = (1 T y[Í)h-V2 = i1 ± / Í ) A -

• Cases QLla and QLlb: a2 

Aa\ = 0 & ax = ( | + ± ± ljl+3V2)a2, Yi = T^¡^+^^)Pu Yi = 

± 2 ^ ( 1 9 + 1 8 ^ 2 ) 0 1 . 

Cases QLla and QLlb are in case Ll and cases QL2a and QL2b are in case L2. 
Let us consider now the higher order terms of the expansión for the cases L1-L6. Imposing 

the A3 C-integrability conditions (14) on the real and imaginary parts of the coefflcients x¡, 
j = 1 , . . . , 12, deflned in expression (12a), one obtains the following proposition. 

Proposition 3. The most general A3 C-integrable equation is represented by 

(ai + a2) Ki 
«i = P\ 

h--H 
3 (ai + a2) YI 

8a¡ 

a2 = P2 = 0, y2 = 

(ai - a2) yl 
a i 

(42) 



Case (42) is the intersection of cases (26) and (27). As a consequence of result (42) we 
have that an equation of the form Q+ which satisfles the proposition 2, i.e. dispersive with at 
most quadratic nonlinearity, will never be C-integrable. 

Moreover it is easy to prove the following theorem. 

Theorem 2. The equations Q+ satisfying the A3 C-integrability (42) can be linearized by a 
real Mobius transformation 

av„,m + fi 
U„ 

Yv„,m + 5 

ifandonly ift>= ^ ' . The coefficients ofthe linearizing transformation are 

a vi 

la\ 
while the resulting linearized equation is 

Vn,m + Vn+\,m+\ ^ \Vn+\,m + Vn,m+l) = U. (,4o) 
ai 

Equation (43) is the most general linear dispersive equation deflned on the square. As the 
Mobius transformation used is restricted Mobius transformation, (43) can be assumed to be 
the canonical equation for this case. 

4. Conclusions 

In this work we presented the complete classiflcation of the linerizable dispersive partial 
difference equations belonging to the Q+ class using múltiple scales expansions around 
a periodic discrete wave solution of the linearized equation, up to the flffh order in the 
perturbation expansión parameter. The resulting linearizable system depends on three 
free parameters, and requesting the resulting equation to explicitly linearize via a Mobius 
transformation reduces the free parameters to one. The proof of the linearizability of the 
equation Q+ satisfying just the A3 C-integrability conditions (42) is still an open problem. 
Maybe by going higher in the perturbation expansión we could be able to flx the parameter f 
according to the theorem in last section. 

This calculation shows that the múltiple scale expansión can be effectively used to classify 
discrete equations. 

Work is in progress for the derivation ofthe integrable class of dispersive partial difference 
equations belonging to the Q+ class. They are provided by a reduced set of equations with 
respect to the one considered in this case, as P2 ^ 0 is just a real constant. Moreover, the 
integrability conditions are given by a larger number of nonlinear algebraic equations for the 
parameters entering into the equation and, as such, are much harder to solve. 

Work is also in progress in the study of the Q_ case. In this case we get at the lowest 
order in the perturbative parameter a nonlinear system of PDEs relating the zeroth and the 
fundamental harmonic. The solution of this equation is the key ingredient in the classiflcation 
of this class of equations which contains all dispersive equations belonging to the ABS 
classiflcation of multilinear equations on the square. 
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