2,334 research outputs found

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    The molecular genetic landscape of human brain size variation

    Get PDF
    Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease

    Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey

    Get PDF
    The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects

    Outcome based subgroup analysis: a neglected concern

    Get PDF
    A subgroup of clinical trial subjects identified by baseline characteristics is a proper subgroup while a subgroup determined by post randomization events or measures is an improper subgroup. Both types of subgroups are often analyzed in clinical trial papers. Yet, the extensive scrutiny of subgroup analyses has almost exclusively attended to the former. The analysis of improper subgroups thereby not only flourishes in numerous disguised ways but also does so without a corresponding awareness of its pitfalls. Comparisons of the grade of angina in a heart disease trial, for example, usually include only the survivors. This paper highlights some of the distinct ways in which outcome based subgroup analysis occurs, describes the hazards associated with it, and proposes a simple alternative approach to counter its analytic bias. Data from six published trials show that outcome based subgroup analysis, like proper subgroup analysis, may be performed in a post-hoc fashion, overdone, selectively reported, and over interpreted. Six hypothetical trial scenarios illustrate the forms of hidden bias related to it. That bias can, however, be addressed by assigning clinically appropriate scores to the usually excluded subjects and performing an analysis that includes all the randomized subjects. A greater level of awareness about the practice and pitfalls of outcome based subgroup analysis is needed. When required, such an analysis should maintain the integrity of randomization. This issue needs greater practical and methodologic attention than has been accorded to it thus far

    Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies

    Get PDF
    Polyhydroxyalkanoates (PHAs) produced from mixed microbial cultures (MMC), regarded as potential substitutes of petrochemical plastics, can be found as intracellular granules in various microorganisms under limited nutrient conditions and excess of carbon source. PHA is traditionally quantified by laborious and time-consuming chromatography analysis, and a simpler and faster method to assess PHA contents from MMC, such as quantitative image analysis (QIA), is of great interest. The main purpose of the present work was to upgrade a previously developed QIA methodology (Mesquita et al., 2013a, 2015) for MMC intracellular PHA contents quantification, increase the studied intracellular PHA concentration range and extend to different sequencing batch reactor (SBR) operation strategies. Therefore, the operation of a new aerobic dynamic feeding (ADF) SBR allowed further extending the studied operating conditions, dataset, and range of the MMC intracellular PHA contents from the previously reported anaerobic/aerobic cycle SBR. Nile Blue A (NBA) staining was employed for epifluorescence microscope visualization and image acquisition, further fed to a custom developed QIA. Data from each of the feast and famine cycles of both SBR were individually processed using chemometrics analysis, obtaining the correspondent partial least squares (PLS) models. The PHA concentrations determined from PLS models were further plotted against the results obtained in the standard chromatographic method. For both SBR the predicted ability was higher at the end of the feast stage than for the famine stage. Indeed, an independent feast and famine QIA data treatment was found to be fundamental to obtain the best prediction abilities. Furthermore, a promising overall correlation (R2 of 0.83) could be found combining the overall QIA data regarding the PHA prediction up to a concentration of 1785.1 mgL-1 (37.3 wt%). Thus, the results confirm that the presented QIA methodology can be seen as promising for estimating higher intracellular PHA concentrations for a larger reactors operation systems and further extending the prediction range of previous studies.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE01-0145-FEDER-000004) funded by European Regional Development Fundunder the scope ofNorte2020 - ProgramaOperacional Regional do Norte.The authors also acknowledge the financial support to Cristiano S. Leal (PTDC/EBB-EBI/103147/2008, FCOMP-01-0124-FEDER009704) and Daniela P. Mesquita through the FCT postdoctoral grant (SFRH/BPD/82558/2011).info:eu-repo/semantics/publishedVersio

    Diagnosis of prostate cancer by detection of minichromosome maintenance 5 protein in urine sediments

    Get PDF
    Background: The accuracy of prostate-specific antigen (PSA) testing in prostate cancer detection is constrained by low sensitivity and specificity. Dysregulated expression of minichromosome maintenance (Mcm) 2–7 proteins is an early event in epithelial multistep carcinogenesis and thus MCM proteins represent powerful cancer diagnostic markers. In this study we investigate Mcm5 as a urinary biomarker for prostate cancer detection. Methods: Urine was obtained from 88 men with prostate cancer and from two control groups negative for malignancy. A strictly normal cohort included 28 men with complete, normal investigations, no urinary calculi and serum PSA <2 ng ml–1. An expanded control cohort comprised 331 men with a benign final diagnosis, regardless of PSA level. Urine was collected before and after prostate massage in the cancer patient cohort. An immunofluorometric assay was used to measure Mcm5 levels in urine sediments. Results: The Mcm5 test detected prostate cancer with 82% sensitivity (confidence interval (CI)= 72–89%) and with a specificity ranging from 73 (CI=68–78%) to 93% (CI=76–99%). Prostate massage led to increased Mcm5 signals compared with pre-massage samples (median 3440 (interquartile range (IQR) 2280 to 5220) vs 2360 (IQR <1800 to 4360); P=0.009), and was associated with significantly increased diagnostic sensitivity (82 vs 60%; P=0.012). Conclusions: Urinary Mcm5 detection seems to be a simple, accurate and noninvasive method for identifying patients with prostate cancer. Large-scale prospective trials are now required to evaluate this test in diagnosis and screening

    Retention of progenitor cell phenotype in otospheres from guinea pig and mouse cochlea

    Get PDF
    Abstract\ud \ud Background\ud Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy.\ud \ud \ud Methods\ud Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFα). Immunofluorescence assays were conducted for phenotype characterization.\ud \ud \ud Results\ud The TGFα group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells.\ud \ud \ud Conclusions\ud Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage

    Evolutionary Processes Acting on Candidate cis-Regulatory Regions in Humans Inferred from Patterns of Polymorphism and Divergence

    Get PDF
    Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15 African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution. Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has occurred in genes expressed during brain development. Overall we find that natural selection has played an important role in the evolution of candidate cis-regulatory regions throughout hominid evolution
    corecore