1,725 research outputs found
Singularity Resolution in Gauged Supergravity and Conifold Unification
We obtain a unified picture for the conifold singularity resolution. We
propose that gauged supergravity, through a novel prescription for the
twisting, provides an appropriate framework to smooth out singularities in the
context of gravity duals of supersymmetric gauge theories.Comment: 13 pages, harvmac, one figure; v2: reference adde
Novel Approaches towards Highly Selective Self-Powered Gas Sensors
The prevailing design approaches of semiconductor gas sensors struggle to overcome most of their current limitations such as poor selectivity, and high power consumption. Herein, a new sensing concept based on devices that are capable of detecting gases without the need of any external power sources required to activate interaction of gases with sensor or to generate the sensor read out signal. Based on the integration of complementary functionalities (namely; powering and sensing) in a singular nanostructure, self-sustained gas sensors will be demonstrated. Moreover, a rational methodology to design organic surface functionalization that provide high selectivity towards single gas species will also be discussed. Specifically, theoretical results, confirmed experimentally, indicate that precisely tuning of the sterical and electronic structure of sensor material/organic interfaces can lead to unprecedented selectivity values, comparable to those typical of bioselective processes. Finally, an integrated gas sensor that combine both the self-powering and selective detection strategies in one single device will also be presented. © 2015 Published by Elsevier Ltd.Peer ReviewedPostprint (published version
Let's Twist Again: General Metrics of G(2) Holonomy from Gauged Supergravity
We construct all complete metrics of cohomogeneity one G(2) holonomy with S^3
x S^3 principal orbits from gauged supergravity. Our approach rests on a
generalization of the twisting procedure used in this framework. It corresponds
to a non-trivial embedding of the special Lagrangian three-cycle wrapped by the
D6-branes in the lower dimensional supergravity. There are constraints that
neatly reduce the general ansatz to a six functions one. Within this approach,
the Hitchin system and the flop transformation are nicely realized in eight
dimensional gauged supergravity.Comment: 31 pages, latex; v2: minor changes, references adde
A cosmological dust model with extended f(chi) gravity
Introducing a fundamental constant of nature with dimensions of acceleration
into the theory of gravity makes it possible to extend gravity in a very
consistent manner. At the non-relativistic level a MOND-like theory with a
modification in the force sector is obtained, which is the limit of a very
general metric relativistic theory of gravity. Since the mass and length scales
involved in the dynamics of the whole universe require small accelerations of
the order of Milgrom's acceleration constant a_0, it turns out that the
relativistic theory of gravity can be used to explain the expansion of the
universe. In this work it is explained how to use that relativistic theory of
gravity in such a way that the overall large-scale dynamics of the universe can
be treated in a pure metric approach without the need to introduce dark matter
and/or dark energy components.Comment: 7 pages, 1 figure. Accepted for publication in the European Physical
Journal
Ultimate response dynamics achieved with gas sensors based on self-heated nanowires
Bias current applied to conductometric gas sensors consisting of individual metal oxide nanowires can be used to heat them up to the temperature necessary for sensing. This approach in combination with the good sensitivity and stability of metal-oxide nanowires, can be used to develop prototypes with low power requirements (few tens of microwatts). Here, we present new sensors devices based on this approach that display fast dynamic performance only limited by the gas-solid interaction kinetics,. © 2009
Gravitational anomalies signaling the breakdown of classical gravity
Recent observations for three types of astrophysical systems severely
challenge the GR plus dark matter scenario, showing a phenomenology which is
what modified gravity theories predict. Stellar kinematics in the outskirts of
globular clusters show the appearance of MOND type dynamics on crossing the
threshold. Analysis shows a ``Tully-Fisher'' relation in these systems,
a scaling of dispersion velocities with the fourth root of their masses.
Secondly, an anomaly has been found at the unexpected scales of wide binaries
in the solar neighbourhood. Binary orbital velocities cease to fall along
Keplerian expectations, and settle at a constant value, exactly on crossing the
threshold. Finally, the inferred infall velocity of the bullet cluster
is inconsistent with the standard cosmological scenario, where much smaller
limit encounter velocities appear. This stems from the escape velocity limit
present in standard gravity; the ``bullet'' should not hit the ``target'' at
more than the escape velocity of the joint system, as it very clearly did.
These results are consistent with extended gravity, but would require rather
contrived explanations under GR, each. Thus, observations now put us in a
situation where modifications to gravity at low acceleration scales cease to be
a matter of choice, to now become inevitable.Comment: 10 pages, 5 figures, Astrophysics and Space Science Proceedings 38,
4
Wrapped branes with fluxes in 8d gauged supergravity
We study the gravity dual of several wrapped D-brane configurations in
presence of 4-form RR fluxes partially piercing the unwrapped directions. We
present a systematic approach to obtain these solutions from those without
fluxes. We use D=8 gauged supergravity as a starting point to build up these
solutions. The configurations include (smeared) M2-branes at the tip of a G_2
cone on S^3 x S^3, D2-D6 branes with the latter wrapping a special Lagrangian
3-cycle of the complex deformed conifold and an holomorphic sphere in its
cotangent bundle T^*S^2, D3-branes at the tip of the generalized resolved
conifold, and others obtained by means of T duality and KK reduction. We
elaborate on the corresponding N=1 and N=2 field theories in 2+1 dimensions.Comment: 32 pages, LateX, v2: minor changes, reference added, v3: section
3.5.2 improve
Analytical study of non-linear transport across a semiconductor-metal junction
In this paper we study analytically a one-dimensional model for a
semiconductor-metal junction. We study the formation of Tamm states and how
they evolve when the semi-infinite semiconductor and metal are coupled
together. The non-linear current, as a function of the bias voltage, is studied
using the non-equilibrium Green's function method and the density matrix of the
interface is given. The electronic occupation of the sites defining the
interface has strong non-linearities as function of the bias voltage due to
strong resonances present in the Green's functions of the junction sites. The
surface Green's function is computed analytically by solving a quadratic matrix
equation, which does not require adding a small imaginary constant to the
energy. The wave function for the surface states is given
Comments on M Theory Dynamics on G2 Holonomy Manifolds
We study the dynamics of M-theory on G2 holonomy manifolds, and consider in
detail the manifolds realized as the quotient of the spin bundle over S^3 by
discrete groups. We analyse, in particular, the class of quotients where the
triality symmetry is broken. We study the structure of the moduli space,
construct its defining equations and show that three different types of
classical geometries are interpolated smoothly. We derive the N=1
superpotentials of M-theory on the quotients and comment on the membrane
instanton physics. Finally, we turn on Wilson lines that break gauge symmetry
and discuss some of the implications.Comment: 21pages, Latex2e. v2: minor change
- …