114 research outputs found
Analyse des délais de prise en charge des cancers thoraciques : étude prospective
RésuméIntroductionLe cancer broncho-pulmonaire est la première cause de décès par cancer en France. Son diagnostic est le plus souvent tardif, alors que le délai entre le début des symptômes et la prise en charge est considéré comme un facteur aggravant.Matériel et méthodesNotre étude prospective a recueilli les différentes dates de prise en charge de 139 patients consécutifs bénéficiant d’un traitement primaire pour un cancer thoracique dans notre hôpital entre novembre 2008 et mai 2009. L’objectif de cette étude était d’évaluer différents délais de prise en charge des patients porteurs d’un cancer thoracique quelle que soit sa prise en charge thérapeutique (médicale ou chirurgicale) et de déterminer la cause de ces délais.RésultatsLe délai médian entre la première imagerie pathologique et le traitement est de 9,6 semaines. Les délais étaient significativement plus courts dans les stades tardifs et les carcinomes à petites cellules (p=0,001). Il existait une tendance à des délais plus courts pour les femmes et des délais plus longs pour les classes d’âge les plus élevées.ConclusionL’évaluation des délais de prise en charge, en particulier pour les stades précoces, s’intègre dans le contrôle de la qualité de prise en charge de ces pathologies.SummaryIntroductionLung cancer is the main cause of cancer death in France. The diagnosis is often late and the delay between the onset of symptoms and management is considered an aggravating factor.Material and methodsOur prospective study collected the dates of the start of management of 139 consecutive patients receiving first line treatment for thoracic cancer in our hospital between November 2008 and May 2009. The aim of this study was to evaluate the delays in medical or surgical treatments in patients with thoracic cancer and to determine the cause of these delays.ResultsThe median delay between the first abnormal chest X-ray and treatment was 9.6 weeks. The delays were significantly shorter in the late stages and in small cell cancer (P=0.001). There was a tendency for shorter delays in women and for longer delays in older patients.ConclusionEvaluation of the delays in treatment, particularly in the early stages, is part of the quality control of management of these diseases
Structural Stability of Transparent Conducting Films Assembled from Length Purified Single-Wall Carbon Nanotubes
Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed
Recommended from our members
Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci
Background
DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach.
Methods
The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses.
Results
We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development.
Conclusions
We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context
Variation in amine composition in plant species: how it integrates macroevolutionary and environmental signals.
Premise of the study: While plants show lineage-specific differences in metabolite composition, plant metabolites are also known to vary in response to the environment. The extent to which these different determinants of metabolite composition are mutually independent and recognizable is unknown. Moreover, the extent to which the metabolome can reconcile evolutionary constraint with the needs of the plant for rapid environmental response is unknown. We investigated these questions in plant species representing different phylogenetic lineages and growing in different subantarctic island environments. We studied their amines—metabolites involved in plant response to environmental conditions. • Methods: Nine species were sampled under high salinity, water saturation, and altitude on the Kerguelen Islands. Their profiles of free aromatic, aliphatic, and acetyl-conjugated amines were determined by HPLC. We related amine composition to species and environment using generalized discriminant analyses. • Key results: Amine composition differed significantly between species within the same environment, and the differences reflected phylogenetic positions. Moreover, across all species, amine metabolism differed between environments, and different lineages occupied different absolute positions in amine/environment space. Interestingly, all species had the same relative shifts in amine composition between environments. • Conclusion: Our results indicate a similar response of amine composition to abiotic environments in distantly related angiosperms, suggesting environmental flexibility of species is maintained despite major differences in amine composition among lineages. These results aid understanding of how in nature the plant metabolome integrates ecology and evolution, thus providing primordial information on adaptive mechanisms of plant metabolism to climate change
Probing the cooperative nature of the conductive components in polystyrene/poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-single- walled carbon nanotube composites
The percolation threshold of single-walled carbon nanotubes (SWCNTs) introduced into polystyrene (PS) via a latex-based route has been reduced by using conductive surfactants. The use of the conductive polymeric latex, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), in conjunction with SWCNTs leads to conductive composites with loadings of both constituents below their own individual percolation thresholds. The high concentration of PEDOT:PSS in the final composites raises the concern that the composite conductivity is a result of the presence of the PEDOT:PSS alone. To elucidate the cooperative nature of the two conductive components, the contribution of the SWCNTs to the overall composite conductivity is investigated by replacing the original high-quality SWCNTs with SWCNTs of a lower quality. Percolation thresholds recorded for systems utilizing the lower quality tubes stabilized with nonconductive surfactants were over 2 wt % SWCNTs (4 times that of previously reported systems). The introduction of PEDOT:PSS was, once again, found to lower the percolation threshold (to 0.3 wt %) and to increase the ultimate conductivity up to the level of a pure PEDOT:PSS/PS blend. In the PS/PEDOT:PSS−SWCNT systems, the role of the SWCNT network is proposed to be limited to the formation of a template or scaffold on which a (more or less) continuous PEDOT:PSS layer deposits. The ultimate conductivity is therefore determined by the PEDOT:PSS alone
Controlling electrical percolation in multicomponent carbon nanotube dispersions
Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components
Probing the cooperative nature of the conductive components in polystyrene/poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-single- walled carbon nanotube composites
The percolation threshold of single-walled carbon nanotubes (SWCNTs) introduced into polystyrene (PS) via a latex-based route has been reduced by using conductive surfactants. The use of the conductive polymeric latex, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), in conjunction with SWCNTs leads to conductive composites with loadings of both constituents below their own individual percolation thresholds. The high concentration of PEDOT:PSS in the final composites raises the concern that the composite conductivity is a result of the presence of the PEDOT:PSS alone. To elucidate the cooperative nature of the two conductive components, the contribution of the SWCNTs to the overall composite conductivity is investigated by replacing the original high-quality SWCNTs with SWCNTs of a lower quality. Percolation thresholds recorded for systems utilizing the lower quality tubes stabilized with nonconductive surfactants were over 2 wt % SWCNTs (4 times that of previously reported systems). The introduction of PEDOT:PSS was, once again, found to lower the percolation threshold (to 0.3 wt %) and to increase the ultimate conductivity up to the level of a pure PEDOT:PSS/PS blend. In the PS/PEDOT:PSS−SWCNT systems, the role of the SWCNT network is proposed to be limited to the formation of a template or scaffold on which a (more or less) continuous PEDOT:PSS layer deposits. The ultimate conductivity is therefore determined by the PEDOT:PSS alone
- …