78 research outputs found

    Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample

    Get PDF
    BACKGROUND: Inflammatory mediators can serve as biomarkers for the monitoring of the disease progression or prognosis in many conditions. In the present study we introduce an adaptation of a membrane-based technique in which the level of up to 40 cytokines and chemokines can be determined in both human and rodent blood in a semi-quantitative way. The planar assay was modified using the LI-COR (R) detection system (fluorescence based) rather than chemiluminescence and semi-quantitative outcomes were achieved by normalizing the outcomes using the automated exposure settings of the Odyssey readout device. The results were compared to the gold standard assay, namely ELISA. RESULTS: The improved planar assay allowed the detection of a considerably higher number of analytes (n = 30 and n = 5 for fluorescent and chemiluminescent detection, respectively). The improved planar method showed high sensitivity up to 17 pg/ml and a linear correlation of the normalized fluorescence intensity with the results from the ELISA (r = 0.91). CONCLUSIONS: The results show that the membrane-based technique is a semi-quantitative assay that correlates satisfactorily to the gold standard when enhanced by the use of fluorescence and subsequent semi-quantitative analysis. This promising technique can be used to investigate inflammatory profiles in multiple conditions, particularly in studies with constraints in sample sizes and/or budget

    The effect of functional roles on perceived group efficiency during computer-supported collaborative learning

    Get PDF
    In this article, the effect of functional roles on group performance and collaboration during computer-supported collaborative learning (CSCL) is investigated. Especially the need for triangulating multiple methods is emphasised: Likert-scale evaluation questions, quantitative content analysis of e-mail communication and qualitative analysis of open-ended questions were used. A comparison of fourty-one questionnaire observations, distributed over thirteen groups in two research conditions – groups with prescribed functional roles (n = 7, N = 18) and nonrole groups (n = 6, N = 23) – revealed no main effect for performance (grade). Principal axis factoring of the Likert-scales revealed a latent variable that was interpreted as perceived group efficiency (PGE). Multilevel modelling (MLM) yielded a positive marginal effect of PGE. Most groups in the role condition report a higher degree of PGE than nonrole groups. Content analysis of e-mail communication of all groups in both conditions (role n = 7, N = 25; nonrole n = 6, N = 26) revealed that students in role groups contribute more ‘coordination’ focussed statements. Finally, results from cross case matrices of student responses to open-ended questions support the observed marginal effect that most role groups report a higher degree of perceived group efficiency than nonrole groups

    Forward ray tracing for image projection prediction and surface reconstruction in the evaluation of corneal topography systems

    Get PDF
    A forward ray tracing (FRT) model is presented to determine the exact image projection in a general corneal topography system. Consequently, the skew ray error in Placido-based topography is demonstrated. A quantitative analysis comparing FRT-based algorithms and Placido-based algorithms in reconstructing the front surface of the cornea shows that arc step algorithms are more sensitive to noise (imprecise). Furthermore, they are less accurate in determining corneal aberrations particularly the quadrafoil aberration. On the other hand, FRT-based algorithms are more accurate and more precise showing that point to point corneal topography is superior compared to its Placido-based counterpart

    Implementing glucose control in intensive care: a multicenter trial using statistical process control

    Get PDF
    Glucose control (GC) with insulin decreases morbidity and mortality of critically ill patients. In this study we investigated GC performance over time during implementation of GC strategies within three intensive care units (ICUs) and in routine clinical practice. All adult critically ill patients who stayed for >24 h between 1999 and 2007 were included. Effects of implementing local GC guidelines and guideline revisions on effectiveness/efficiency-related indicators, safety-related indicators, and protocol-related indicators were measured. Data of 17,111 patient admissions were evaluated, with 714,141 available blood glucose levels (BGL) measurements. Mean BGL, time to reach target, hyperglycemia index, sampling frequency, percentage of hyperglycemia events, and in-range measurements statistically changed after introducing GC in all ICUs. The introduction of simple rules on GC had the largest effect. Subsequent changes in the protocol had a smaller effect than the introduction of the protocol itself. As soon as the protocol was introduced, in all ICUs the percentage of hypoglycemia events increased. Various revisions were implemented to reduce hypoglycemia events, but levels never returned to those from pre-implementation. More intensive implementation strategies including the use of a decision support system resulted in better control of the process. There are various strategies to achieve GC in routine clinical practice but with variable success. All of them were associated with an increase in hypoglycemia events, but GC was never stopped. Instead, these events have been accepted and managed. Statistical process control is a useful tool for monitoring phenomena over time and captures within-institution change

    Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action

    Get PDF
    It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response

    High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment

    Get PDF
    A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p

    High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment

    Get PDF
    A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis
    corecore