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Abstract: A forward ray tracing (FRT) model is presented to determine the 

exact image projection in a general corneal topography system. 

Consequently, the skew ray error in Placido-based topography is 

demonstrated. A quantitative analysis comparing FRT-based algorithms and 

Placido-based algorithms in reconstructing the front surface of the cornea 

shows that arc step algorithms are more sensitive to noise (imprecise). 

Furthermore, they are less accurate in determining corneal aberrations 

particularly the quadrafoil aberration. On the other hand, FRT-based 

algorithms are more accurate and more precise showing that point to point 

corneal topography is superior compared to its Placido-based counterpart. 
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1. Introduction 

Ray tracing is a powerful technique to predict outcomes of wave propagation. The forward 

approach is a natural, logical method where propagation is traced from the source to other 

points of interest. For example, forward ray tracing (FRT) simulation has been used in 

rendering, where images are synthesized from a model by means of computer programs [1]. 

Unfortunately, the forward approach is computationally expensive and in most cases 

impractical. The backward approach (backward ray tracing) where rays are traced back from 

the image to the source is often used instead of the forward approach [2]. Nevertheless, clever 

use of backward ray tracing can simulate forward ray tracing: i.e. multidirectional ray tracing 

in lighting analysis and pseudo forward ray tracing in corneal topography [2,3]. There are no 

known forward ray tracing algorithms applied in corneal topography (CT) because it is 

difficult to predict which among the infinite directions from the light source will propagate 

towards its appropriate image location. However in this paper, it is demonstrated that with 

proper modeling of a specular reflection CT system, corneal reflection images can be 

accurately determined using forward ray tracing. 

A widely used CT system uses a technique in which a Placido ring source is used. Current 

surface reconstruction algorithms used in combination with this technique use iterative 

procedures such as arc step algorithms. Arc step algorithms are an implementation of 

backward ray tracing along a surface which is assumed to be continuous and composed of a 

series of arcs. Early algorithms were developed by Doss et al. [4] and Wang et al. [5]. These 

algorithms were further improved throughout the years [6–8]. A major issue that was 

addressed is the skew ray error in the surface reconstruction of Placido-based systems [8–10]. 
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The skew ray error arises because of the assumption that the tracing of the light from the 

image to the source happens within a meridional plane. This is only applicable for rotationally 

symmetric surfaces, which is not the case for the cornea. Therefore, errors in the corneal 

height reconstruction occur and are aptly called skew ray errors. This problem was first 

mentioned by Tripoli [9] and methods were thought of to solve this [10–12]. One approach 

was to stick to the Placido-based system and develop appropriate surface reconstruction 

algorithms that would correct for skew-ray errors. Klein proposed such an algorithm in 1997 

[11] but this method does not appear to have been implemented in any commercial 

topographer [13]. 

Another approach to solve the skew ray error problem is to move away from the Placido- 

based systems and introduce alternate stimulator designs which provide one-to-one 

correspondence between image points and source points [12–15]. This allows for corneal 

surface reconstruction algorithms which include skew rays and thus are free from skew-ray 

errors [16–18]. This approach has preliminary validation on artificial surfaces and eyes and 

was shown to be at least as accurate in reconstructing rotationally symmetric features of the 

cornea as Placido-based methods but more accurate in reconstructing non-rotationally 

symmetric corneal surface features [19]. This was also demonstrated by computer simulations 

for a telecentric CT system which include noise analysis [20]. 

To further strengthen the proof that topographers allowing for one-to-one correspondence 

of image and source points are superior to Placido-based systems, a new algorithm for surface 

reconstruction based on the principle of forward ray tracing is introduced. This algorithm is 

validated and compared with existing arc step based algorithms in reconstructing simulated 

surfaces in which the accuracy and precision of the algorithms is evaluated under different 

noise conditions. Simulation of a nodal point CT system was chosen for comparison and 

typical parameter values were assigned based on an existing experimental topographer [3,19] 

 

Fig. 1. Diagram of forward ray tracing model 

2. The FRT model for nodal point CT systems 

The corneal surface produces distinguishable specular reflections for appropriate light 

sources. In modeling the reflection phenomenon for a CT system (see Fig. 1) the light sources 

are modeled as source points (xs, ys, zs). These are traced towards the intersection points on 

the corneal surface (xc, yc, zc) and proceed with the reflected ray towards the image points (xi, 

yi, zi) captured by a camera. Because only the chief ray is considered the reflected ray is 

constrained to pass through the nodal point (0, 0, 0) of the camera lens system. These 

definitions are summarized in Table 1. A telecentric system can also be employed instead of 

the nodal point system described here, by adequately modifying the nodal-point constraint. It 
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is known that surface reconstruction for both systems are quite similar and are described well 

in literature [8]. 

The goal of forward ray tracing is to be able to determine the image points, when the 

source points and the corneal surface shape are known. The corneal surface, the incident 

vector and the reflected vector can easily be represented by simple equations (Eqs. (1-3) in 

Table 1). Here f(xc,yc) in Eq. (1) represents a function composed of Zernike polynomials 

parameterized by Zernike polynomial coefficients evaluated over an 6 mm corneal zone. A 

Zernike polynomials expansion is an appropriate way of expressing the corneal surface 

[17,18]. It should be noted that Zernike representation can describe any corneal surface as 

long as sufficient number of coefficients is used [3,21]. For this reason, order 8 (45 terms) 

was chosen to describe surfaces considered in this paper. Only the octafoil surface described 

later in this paper will have a better description when the Zernike order is increased but for 

the purpose of preliminary analysis we start with order 8. Equation (2) and 3 represent the 

incident and reflected vectors respectively and are determined from the normal vector N on 

the corneal surface. The normal vector N is derived by taking the surface gradient using the 

partial derivatives of Eq. (1) and is given by Eq. (6). The relation the corneal normal 

describes with the incident unit vector I and the reflected vector R is captured by Eqs. (4) and 

5. Equation (4) constrains the direction of the surface normal to be in the same direction of 

the angle bisector of the incident and reflected ray while Eq. (5) places the normal vector to 

lie in the same plane as the incident and reflected ray. Equations (1-5) are actually 11 scalar 

equations containing 11 unknowns: xc, yc, zc, Ix, Iy, Iz, Rx, Ry, Rz, lI, lR, where Ix, Iy, Iz, Rx, Ry, Rz 

and lI, lR are the directional cosines and the lengths of the incident and reflected vectors 

respectively. Note that Eqs. (2), 3 and 5 are vector equations which can be decomposed into 

Table 1. Definitions and equations for the forward ray tracing model 

Description Equation  

Reflection source point ( ), ,
s s s

x y z   

Reflection image point ( ), ,
i i i

x y z   

Intersection point on the cornea ( ), ,
c c c

x y z   

Incident vector (length x directional cosines) , ,I x y zI I Iℓ   

Reflected vector (length x directional cosines) , ,R x y zR R Rℓ   

Normal vector N
�

 on the corneal surface , ,x y zN N N   

Equation of the surface ( , ) 0
c c c

z f x y− + =  (1) 

Incident Vector , , , ,c s c s c s I x y zx x y y z z I I I− − − = ℓ  (2) 

Reflected Vector , , , ,c c c R x y zx y z R R R− − − = ℓ  (3) 

Dot Product ( ) 0I R N+ • =
� �� �

 (4) 

Cross Product ( ) 0I R N− × =
� �� �

 (5) 

Surface Gradient , , , , 1
x y z

c c

f f
N N N

x y

∂ ∂
= −

∂ ∂
 (6) 
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three scalar equations each, however the dot product equation (Eq. (4) results into only one 

scalar equation. This balanced set of equations and unknowns makes it possible to determine 

the solution of the corneal intersection points xc, yc and zc by standard mathematical software 

(e.g. using the fsolve routine in Matlab [22]). Consequently, the location of the image points 

captured by the camera can be determined by direct ray tracing from the corneal intersection 

points to the nodal point of the lens and further to the camera plane. 

3. Surface reconstruction method derived from FRT 

Using the FRT algorithm, a direct tracing from source points via a known surface to the 

image plane can be done, thus directly simulating the image points. This is a powerful 

validation technique which is an upgrade of an earlier development, the pseudo forward ray 

tracing (PFRT) algorithm [3]. The PFRT simulates forward ray tracing by evaluating a bundle 

of back-traced rays from the neighborhood of image points. The FRT on the other hand uses 

only the chief ray and thus is less computationally expensive. 

A further use of the FRT algorithm can be made by applying the same principles in 

corneal surface reconstruction. Given, a set of known source points and corresponding image 

points the corneal surface can be reconstructed using a similar set of equations to that 

described in Table 1. Equation (3) is now modified into: 

 , , , ,i i i R x y zx y z R R R= ℓ  (7) 

This is derived by tracing from the nodal point to the image point. All parameters in Eq. (7) 

are now known variables. By combining Eq. (7) with the Eqs. (1-6), an iterative solution to 

find the appropriate Zernike coefficients describing the corneal surface can be determined 

using a step by step procedure. The procedure which is similar to an earlier method [17] is 

described as follows: 

STEP 1: Create matrix equations derived from the equations in Table 1 and Eq. (7): 

 ,c c c

p p p

z x y
M

r r r

 
=   

 
C  (8) 

This is the surface equation expressed in Zernike convention: rp is the pupil radius used as a 

reference for a unit circle, M is the matrix representation of the Zernike polynomials and C 

represents the Zernike coefficients. Finally, we have two matrix equations from the cross 

product (Eq. (5): 

 ( )x x z z

M
I R I R

x

∂
− = − −

∂
C  (9) 

 ( )y y z z

M
I R I R

y

∂
− = − −

∂
C  (10) 

STEP 2: Use zero initial values for the Zernike coefficients to represent a flat surface in the 

corneal apex plane. Via ray tracing, image points can be traced to the apex plane and form the 

points (xc, yc, zc). 

STEP 3: Use (xc, yc, zc) as information to calculate a new set of Zernike coefficients C by 

exploiting the matrix Eqs. (8-10). These matrix equations can be cast into the form: 

 ( , , ) ( , , )
c c c c c c

A x y z B x y z= C  (11) 

The solution for Eq. (11) is given by: 
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1

T T
B B B A

−
   =    C  (12) 

Which can be solved numerically using the Moore-Penrose pseudo inverse algorithm. 

STEP 4: Go back to STEP 2 to build a new surface with the new Zernike coefficients. 

Proceed to STEP 3 to determine more accurate Zernike coefficients. Repeat this iteration until 

a desired accuracy has been reached. 

The convergence of the outlined procedure is quite fast. With three iterations sub-micron 

accuracy can already be achieved. 

4. Simulation of corneal topography systems 

4.1 Qualitative evaluation 

The forward ray tracing model described above can now be used to illustrate the skew ray 

error problem encountered in Placido-based corneal topography [9,10,19,23]. Figure 2 

describes forward ray traced simulated Placido reflection pattern of a 6 Diopter toric surface 

(Fig. 2a) and the Rand surface (Fig. 2c) with 8 mm base radius. The Rand surface is a 

hypothetical surface that was used to simulate a radially keratotomized eye [23]. It is a 

surface characterized by a smooth spherical surface within the 3 mm central corneal zone and 

an octafoil corrugation on the periphery. 20 rings are considered within an 8 mm corneal 

zone. Each ring is traced from 256 meridian source points. The two red circle outlines 

correspond to the reflection of the 10th and 20th ring on a sphere with 8 mm radius. The 

reflection pattern in Fig. 2c is quite similar to an experimental photo of an actual artificial 

Rand surface (Fig. 4 in ref [19]). In an actual Placido reflection only a continuous ring pattern 

is observed and not the density distribution of points within the ring as revealed by the FRT 

simulation. Figure 2b and Fig. 2d show another description of Fig. 2a and Fig. 2c only this 

time limiting the tracing of rays to 8 meridians. Red circles are image points on the meridian 

and Blue squares are the actual forward ray traced image points. Because the surface 

reconstruction in Placido-based system is limited to meridional ray tracing, taking the Red 

circles instead of the Blue squares as actual input for the surface reconstruction produces the 

so called “skew ray error”. 

Although the skew ray error problem has been known for quite some time, motivation to 

correct this problem was initially not strong because the effect of this problem does not have a 

large impact when evaluating corneal curvature, astigmatism and asphericity, which are 

standard parameters used in the clinical practice [9]. However, due to recent developments in 

ophthalmic optics, particularly in customized laser refractive surgery procedures, the 

importance of being able to measure other higher order aberrations such as coma, trefoil, 

quadrafoil and spherical aberration has become apparent. A recent study found that 

astigmatism, trefoil and quadrafoil aberration was induced by cataract surgery using superior 

incision [24] emphasizing the importance to measure this aberration accurately to identify the 

impact of different incision strategies in cataract surgery. 
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Fig. 2. Illustration of skew ray error in Placido-based corneal topography. Depicted are the 

forward ray traced simulated Placido reflection patterns of a 6 Diopter toric surface (a,b) and 

the Rand surface (c,d) with 8 mm base radius. The surfaces are evaluated in an 8mm corneal 

region for 20 rings with either 256 meridians (a,c) or 8 meridians (b,d). The two red circle 

outlines corresponds to the reflection of the 10th and 20th ring on a sphere with 8 mm radius. 

Red dots are image points on the meridian and blue squares are the actual forward ray traced 

image points. 

4.2 Quantitative evaluation 

For a quantitative evaluation of the effect of skew ray error in corneal topography four 

different algorithms were used to reconstruct simulated artificial and corneal surfaces: 

1) FRT-based surface reconstruction algorithm (FRT algorithm) described in section 3. 

2) FRT-based surface reconstruction algorithm with meridional constraint (MRT 

algorithm). This means that the tracing of rays from the image points to the source 

points is constrained to lie on the same meridian. This algorithm will show the effect 

of neglecting skew ray errors entirely. 

3) Basic arc step algorithm (Basic AS algorithm) described in ref [6]. The arc step 

algorithm does calculations on a per meridian basis. The algorithm tries to converge 

to calculated corneal height values by assuming that the corneal surface is spherical 

on a local scope and therefore considers a set of intersections of light rays on the 

cornea. Adjacent points within one meridian should form an arc and the algorithm 

makes sure that the connections between consecutive arcs are continuous, in other 

words the derivatives at the arc boundaries match. 
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4) Arc step algorithm with skew ray error correction (SKEC AS algorithm) described in 

ref [8]. For this study, the implementation is done for a nodal point system as 

described in Fig. 1 instead of the original implementation in a telecentric system as 

described in literature. 

The performance of corneal surface reconstruction algorithms is dependent on a large number 

of variables: the number of detected points, the accuracy of the point or edge detection 

algorithms, the amount of noise in the system, and the calibration accuracy, to name a few. In 

order to make a good comparison between various reconstruction algorithms it is important to 

ensure the simulated experimental conditions are similar. In this study the following 

experimental conditions were taken into account: 

- Identical stimulator pattern for all algorithms; the typical square one-to-one stimulator 

design was modified to match a Placido disk based design. However, where the one-

to-one correspondence algorithm had full information on the location of the detected 

points, for the arc step algorithms only the information on the meridians was made 

available. 

- An equal number of data points available to both algorithms, equal to the number of 

rings times the number of meridians. 

- Equal noise amplitude applied; however due to the nature of the difference between 

Placido disk systems and one-to-one systems the effect of the applied noise varies 

slightly. The implementation of the noise is described more precisely in the later part 

of this section. 

The following surfaces are simulated: 

1) A toric surface with 8.0 mm and 7.5 mm maximum and minimum meridional radius of 

curvature; both meridional axes are perpendicular to each other. 

2) A spherical surface of 8mm radius of curvature with trefoil aberration. 

3) A spherical surface of 8mm radius of curvature with quadrafoil aberration. 

4) A spherical surface of 8mm radius of curvature with octafoil aberration. 

5) A typical corneal surface without abnormalities. 

Surfaces 2-4 are multi-foil surfaces that are in the same class of a surface type first described 

by Rand et al. [23]. These surfaces can be described in cylindrical coordinates (ρ,θ,z) where 

the corneal sag, z, is: 

 2 2 ( , )z r r gρ ρ θ= − − +  (13) 

Where g represents the deviation from a sphere of radius ρ and is given by: 

 

sin( ) 2

( , ) 2( 1.5) sin( ) 1.5 2

0 2

n for mm

g n mm

for mm

ε θ ρ
ρ θ ρ ε θ ρ

ρ

≥ 
 

= − < < 
  ≤ 

       (14) 

Here ε is the amplitude of the peripheral corrugation on the surface (for the simulation this 

was set to 0.01 mm), r is the surface base radius of curvature set at 8 mm, n = 3, 4, 8 for 

trefoil, quadrafoil and octafoil respectively. 

Surface 5 is a simulation of a real corneal surface. Corneal aberrations for this eye were 

chosen based on the data from ref [25]. Data from the study is available up to Zernike radial 

order 6 so the coefficients for order 7 and order 8 are assigned zero values. The root mean 

square (rms) values of the relevant Zernike coefficients representing various corneal 

aberrations are summarized in Table 2 below. 
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Table 2. Corneal aberration of a simulated surface of a real cornea 

Corneal Aberration (µm) rms up to order 8 

Spherical 1.434 

Astigmatism 0.750 

Coma 0.418 

Trefoil 0.172 

Quadrafoil 0.181 

Each simulated surface is used as a reference to calculate the error in surface 

reconstruction for each algorithm. This error is calculated by the root mean square of the error 

in the Zernike coefficients representing the reconstructed surface as recovered by the specific 

algorithm when compared with the simulated surface. The simulated and reconstructed 

surfaces are represented by Zernike polynomials expansion of up to 8
th

 radial order. The 

stimulator point pattern chosen for the simulation is a dotted ring system (10 rings, 180 points 

per ring within a 6 mm corneal zone). This allows for a clear comparison between a one-to-

one correspondence topography system and a Placido-based topography system. The source 

points are arbitrarily chosen to be located at a plane 50 mm away from the corneal apex. 

These points were generated using back ray tracing from the camera plane, where the image 

pattern forms rings that have equidistant spacing from each other, to an 8 mm radius of 

curvature spherical surface and to the plane assigned for the source points. The distance 

between the nodal point of the lens and the corneal apex is chosen to be 105 mm for this 

simulation. These dimensions roughly correspond with the dimensions of the experimental 

corneal topography machine described in refs [3,19]. 

After the source points are generated, the FRT algorithm is used to predict the image 

points resulting from reflections on the simulated surface. This was done for specific surfaces 

to generate image points on the camera. The set of source points and image points are used as 

input for the FRT surface reconstruction algorithm. Because the three other algorithms are 

tracing light rays along a meridian, the location of the source points are adjusted so that the 

“new assigned source point” will be located on the same meridian as the image points. 

The performances of the four algorithms are first evaluated assuming there is no noise 

present in the measurement of the image points. The results are summarized in Table 3. In 

this case the FRT algorithm shows machine accuracy (error < 1 x 10
−15

 µm). The MRT 

algorithm produced the biggest error, under-estimating the true value by an order of 1 µm. 

The arc step algorithms produce larger errors compared to the FRT algorithm but the amount 

of error is clinically not relevant, noting that 1 µm RMS error is equal to 0.77 equivalent 

Diopter error [26]. For the case of trefoil aberration and astigmatism the SREC AS algorithm 

reduced the rms error of the basic arc step algorithm. This was not the case for the quadrafoil 

and octafoil aberration. 

Table 3. Performance of the four algorithms on four artificial surfaces.  

The error in µm of the aberration corresponding to the most dominant feature of the 

surface is evaluated. 

 
RMS of 

dominant 

feature 

FRT MRT Basic AS SREC AS 

RMS astigmatism 3.0984 < 1 x 10−15 1.3794 0.0004 0.0001 

RMS trefoil 1.5031 < 1 x 10−15 0.6896 0.0018 −0.0016 

RMS quadrafoil 1.5004 < 1 x 10−15 0.8397 0.0034 −0.0107 

RMS octafoil 1.7311 < 1 x 10−15 1.1449 −0.0026 −0.2577 

Similarly for the simulated corneal surface, compared to the artificial surfaces, the FRT 

algorithm shows machine accuracy (error < 1 x 10
−15

 µm) in reconstructing the corneal 
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aberrations. The results are summarized in Table 4. The MRT algorithm shows larger errors 

in the order of a small fraction of a micrometer. 

Table 4. Performance of the four algorithms on a simulated corneal surface.  

The error in µm of the non-rotationally symmetric aberration is evaluated. 

 
RMS of 

dominant 

feature 

FRT MRT Basic AS SREC AS 

RMS astigmatism 0.7498 < 1 x 10−15 0.0819 −0.0150 0.0008 

RMS trefoil 0.1717 < 1 x 10−15 −0.0439 0.0019 0.0030 

RMS quadrafoil 0.1808 < 1 x 10−15 −0.0296 0.0017 0.0015 

Figure 3 shows residual curvature plots of the different algorithms in reconstructing the 

simulated corneal surface. The residual curvature is calculated by taking the absolute 

difference of the curvature map of the simulated surface and the curvature map of the 

reconstructed surface by the algorithm. The FRT algorithm produced a flat residual curvature 

map (negligible error). The largest local curvature was produced by the MRT algorithm. The 

arc step algorithm has an improved performance compared to the MRT algorithm. This 

performance was further improved by the SREC AS algorithm. 

 

Fig. 3. Residual curvature map in Diopter for a simulated cornea with no abnormalities. Here 

(a) represents the reconstruction by the FRT algorithm, (b) is the reconstruction by MRT 

algorithm, (c) is the reconstruction by the Basic AS algorithm and (d) is the SREC AS 

algorithm. 

4.3 Effect of noise 

So far the quantitative analysis is done without the presence of noise in the system. In actual 

measurements the presence of noise is inevitable. Many factors contribute to this, i.e. eye 

movements, shadows created by nose and eye-lashes, pixel resolution of the camera, 

fluctuations of the light intensity captured by the camera, alignment precision of the 

instrument to name a few. Noise will have an effect on the performance of corneal surface 

reconstruction algorithms. This was first mentioned by Klein [11], stating that one-to-one 

correspondence corneal topography surface reconstruction described by Halstead [16] has 

greater robustness to noise than arc step algorithms. This was confirmed recently by 

Sokurenko [20]. We also implemented noise simulation in this study. Gaussian noise was 

applied to the image points (at a modified camera plane such that there is unit magnification 

between the camera plane and the corneal apex plane) and the amplitude was varied taking 

values of 0, 1, 2, 4, 6, 8 and 10 µm. The range from 0 to 10 µm amplitude noise was chosen to 

account for typical camera resolution of corneal topography systems [19,20,27]. This range is 

on the conservative side because this does not include effects of eye movements and other 

factors that contribute to noise. Another important consideration is the fact that for Placido-

based corneal topography, the edge detection of the rings has a big effect. For this case, 

subpixel accuracy can be achieved in the direction along the ring but there would be more 

uncertainties in the radial direction (perpendicular to the ring) [11,19], therefore the 

appropriate noise distribution in this case would be radially oriented, as it is applied in this 

study. For the SREC AS algorithm, only the performance for 0 and 1 µm noise is reported 

#131196 - $15.00 USD Received 6 Jul 2010; revised 23 Jul 2010; accepted 28 Jul 2010; published 26 Aug 2010
(C) 2010 OSA 30 August 2010 / Vol. 18,  No. 18 / OPTICS EXPRESS  19333



  

because the algorithm is unstable for noise ≥ 2 µm. The noise simulation was done for 100 

realizations. The performance of the four algorithms were assessed in terms of accuracy (the 

difference between the mean value of the measurements and the actual value) as represented 

by the height of the bars in the figures and precision (the spread expressed in standard 

deviation of the measured values) as represented by the error bars in the figures. 

 

Fig. 4. Astigmatism error in RMS (up to Zernike order 8) of artificial surface. The results for 

the MRT algorithm are plotted with respect to the secondary y-axis. 

 

Fig. 5. Trefoil error in RMS (up to Zernike order 8) of artificial surface. The results for the 

MRT algorithm are plotted with respect to the secondary y-axis. 

 

Fig. 6. Quadrafoil error in RMS (up to Zernike order 8) of artificial surface. The results for the 

MRT algorithm are plotted with respect to the secondary y-axis. 

 

Fig. 7. Octafoil error in RMS (up to Zernike order 8) of artificial surface. The results for the 

MRT algorithm and the SREC AS algorithm are plotted with respect to the secondary y-axis. 

Figure 4-Fig. 7 show the effect of noise in the performances of the different algorithms in 

reconstructing the toric and multifoil surfaces. The results show a consistent trend that the arc 
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step algorithms are more affected by noise. The spread in the RMS error values are about 2 

times greater for the arc step algorithms than the FRT-based algorithms. Although the MRT 

algorithm produces the largest error, this algorithm is as robust as the FRT algorithm with 

respect to noise. The spread due to noise for these two systems are almost equal in magnitude. 

 

Fig. 8. Astigmatism error in RMS (up to Zernike order 8) of normal eye. 

 

Fig. 9. Trefoil error in RMS (up to Zernike order 8) of normal eye. 

 

Fig. 10. Quadrafoil RMS error (up to Zernike order 8) of normal eye. 

Figure 8-Fig. 10 show the effect of noise in the performances of the different algorithms 

in reconstructing a typical cornea with no abnormalities. The precision of the arc step 

algorithms are 2-3 times worse compared to that of the arc step algorithms. Furthermore, as 

the noise amplitude increases there is also degradation of accuracy for the arc step algorithms. 

For quadrafoil in particular the accuracy and precision is in the order of quarter of Diopter 

(~0.33 µm RMS error). 
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Fig. 11. Curvature maps (a,b,c,d) and residual curvature maps (e,f,g) (in Diopter) of the 

reconstruction of a cornea with no abnormalities by different algorithms at a noise level of 10 

micrometer. The simulated reference surface is represented by (a). The algorithms used for 

reconstruction are FRT (b,e), MRT (c,f) and Basic AS (d,g). The SKEC AS algorithm was 

excluded here because of numerical instability at this noise level. The curvature isolines of the 

curvature maps a,b,c and d are 6/5th diopter apart, and the curvature isolines of the residual 

curvature maps e, f and g are 1/8th diopter apart. 

As a typical example the curvature maps and corresponding residual curvature maps for a 

reconstruction of a simulated cornea at a noise level of 10 micrometer are depicted in Fig. 11. 

The FRT algorithm performs well under these conditions remaining stable well beyond the 4 

mm corneal zone region. The MRT algorithm is also relatively stable in the peripheral region 

but suffers from large artifacts in the central region. The astigmatism as manifested in the 

bow-tie structure in the actual curvature map disappeared. Finally, the basic arc step 

algorithm is unstable beyond the 4 mm corneal zone region resulting in residuals of several 

diopters. Also in the central region some artifacts can be seen in the residual curvature map 

exceeding 1 diopter appear. The basic arc step curvature map shows an increase magnitude of 

astigmatism as manifested by the larger bow tie structure. Also, the appearance of a 

quadrafoil-like artifact is apparent from the orange curvature isolines in Fig. 11d. 
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5. Discussion 

In this study the performance of four surface reconstruction algorithms for two types of 

corneal topography system were evaluated under different experimental conditions, by 

varying the amount of noise. First the case without any noise is discussed where all 

experimental conditions are assumed to be perfect and the individual algorithm can be 

evaluated. It is known that tilt and decentration affect measurements of corneal surfaces 

[28,29]. However, this aspect was not yet included in the analysis so that a simple and clear 

description of the effects of skew ray error can be made. The extension of the analysis to 

include tilt and decentration can be part of future investigations. 

5.1 Simulations without noise 

Out of the four algorithms discussed here, the MRT algorithm is by far the least accurate as 

can be seen from Table 3, Table 4 and Fig. 3. This demonstrates the danger of not taking into 

account the skew ray error. On the other hand, the arc step algorithms (Basic AS and SREC 

AS) are quite accurate in reconstructing the corneal surface. The procedure in arc step 

algorithms where it is ensured that first and second derivatives are continuous for the whole 

corneal surface partially corrects for the skew ray error and reduces the error to negligible 

amounts. It is also notable that the SREC AS algorithm reduces the error of the basic arc step 

algorithm and this is demonstrated clearly in Fig. 3. However, this does not happen on a 

consistent basis as can be seen from the reconstruction of the octafoil surface (Table 3) and 

also the reconstruction of the trefoil component of the simulated cornea (Table 4). We should 

note that previous demonstrations of the SREC AS algorithm were done in a telecentric CT 

system while in this study it was implemented in a nodal point system. This could explain 

why results of previous studies [8,10] were limited to cases where SREC AS algorithm 

improved the performance of the basic arc step algorithm. 

Although the error of the arc step algorithms is small, it is 11-12 orders higher than that of 

the FRT algorithm. This is consistent with the results of Sokurenko [20] where it was noted 

that the error of point to point topography was 7-9 orders lower than Placido-based 

topography. The difference in the order of magnitude observed could be due to differences in 

the numerical tolerance of the algorithms used, in principle the results show that the accuracy 

is only limited by the machine precision and noise. 

5.2 Simulations with noise 

There are two notable effects of noise in the performance of corneal surface reconstruction 

algorithms: the effect in precision and the effect in accuracy. 

With regard to precision, the point to point algorithms (FRT and MRT) are least affected 

by noise compared to their arc step algorithm counterparts. This is true for both artificial 

surfaces and the simulated corneal surface. The precision of all four algorithms measured for 

artificial surfaces are quite small (< 0.05 µm). The precision measured for the simulated 

cornea is better than 0.1 µm (0.08 eq D) for the point to point corneal topography algorithms 

and can reach as high as 0.27 µm (0.21 eq D) for the basic arc step algorithm. If we take 

0.125 diopter as a threshold for clinical relevance [30,31], then we see that the precision of 

the point to point algorithms even at a noise amplitude of 10 µm is still tolerable while that of 

the basic are step algorithm is clinically relevant. It appears that noise interferes with the 

inherent skew ray error correction mechanism of arc step algorithms. The effect is so great in 

the SREC AS algorithm that at a noise level of 2 µm the algorithm is already unstable. The 

SREC AS algorithm [8,11] attempts to improve upon the earlier published arc step algorithms 

[6] by ensuring that the second derivative, both in radial (along the meridian) and angular 

(along the ring) direction, is continuous. The results suggest that this will work with no noise 

in the measurements. In reality, because noise is always present in measurements the 

performance of the SREC AS algorithm seems to deteriorate quickly which makes it likely 
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that the algorithm crashes even at a 2 µm noise level. There is also disparity between the 

precision obtained from artificial surfaces compared to the simulated cornea. This suggests 

that a good performance in measurement of artificial surfaces does not guarantee a good 

performance for real corneal surfaces. 

In terms of accuracy the FRT algorithm still gives a good performance for all cases even 

at 10 µm noise level. The worst accuracy was 0.028 µm (0.022 eq D) in reconstructing the 

quadrafoil aberration of a simulated corneal surface. On the other hand, the accuracy of the 

arc step algorithms deteriorated with noise and the magnitude of the inaccuracy becomes 

greater the more complex the non-rotationally symmetric aberrations become. For the basic 

arc step algorithm, with increasing aberration complexity (astigmatism, trefoil, quadrafoil) the 

absolute accuracy at 10 µm noise level was 0.075 µm (0.058 eq D), 0.106 µm (0.082 eq D), 

0.200 µm (0.154 eq D) respectively. The error in quadrafoil aberration is higher than the 

clinically tolerable level of 0.125 D and therefore clinically relevant. It is also notable that 

although the MRT algorithm is inaccurate without noise, the accuracy remains stable in the 

presence of noise showing that the precision of point to point algorithms is not significantly 

affected by skew-ray errors. 

5.3 Clinical implications 

It is known that edge artifacts are present in corneal topographic maps when the surface is 

modeled by Zernike polynomials [3]. Apart from edge artifacts that cover less than 10% of 

the evaluation area, the residual curvature map of the simulated cornea (see Fig. 11) when 

FRT is implemented at 10 µm noise level is relatively flat. This is not true for the arc step 

algorithm. The area of the edge artifact is covering a larger area (about 30%) and the central 

region does not display a flat residue. There are several patches where the error is greater than 

1 Diopter. This will introduce confusion in interpreting corneal curvature maps. 

Another important consideration in the clinical set-up is the clinically relevant inaccuracy 

of Placido-based corneal topography in determining the quadrafoil aberration. This could lead 

to false diagnosis such as ruling out the corneal shape as a cause of low vision after corneal 

topography measurements reveal low quadrafoil aberration in cases where the actual 

quadrafoil aberration is high. Point to point topography will avoid these situations. 

6. Conclusion 

In this paper we developed a forward ray tracing algorithm that can be used for image 

projection prediction and surface reconstruction in corneal topography. Consequently, it 

enabled the evaluation of four surface reconstruction algorithms. Two different versions of 

the arc step algorithm used in Placido-based corneal topography were compared to two 

algorithms based on the principle of forward ray tracing. It has been demonstrated that the 

performance of algorithms that use one-to-one correspondence of source and image points are 

superior to algorithms using meridional constraints even with improved features such as skew 

ray error correction. When no noise is present, we note that the first order correction to the 

skew ray error of the basic arc step algorithm gives reasonable results. The arc step algorithm 

with skew ray error correction performs slightly better, but not in all cases. However when 

noise is present the arc step algorithms are demonstrably less precise and less accurate than 

their one-to-one correspondence counterparts. They are inaccurate particularly in determining 

the correct quadrafoil aberration of the cornea. The FRT algorithm is highly accurate and very 

robust in all cases and should therefore be preferred over arc step based algorithms. 
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