767 research outputs found

    Modeling WLAN Received Signal Strengths Using Gaussian Process Regression on the Sodindoorloc Dataset

    Get PDF
    While any wireless technology can be used for indoor localization purposes, WLANhas the advantage of having a huge existing infrastructure. A radio map that matches specific locations to received signal strength is needed, to enable most of these indoor localization methods. To create these radio maps, with enough detail to achieve sufficient localization accuracy, is expensive and time consuming. Therefore, methods to interpolate and extrapolate more detailed maps from sparse radio maps are being developed. One recent approach is to use Gaussian process regression. Even though some papers already studied Gaussian process regression, most studied only the basic model with zero mean and squared exponential kernel. In addition, when the model fit was evaluated in more detail, the experimental area was of limited complexity. Hence, this thesis evaluates the fit of Gaussian process regression, in a more complex indoor environment, based on adequate model metrics and analysis of the plots of the predicted mean and standard deviation functions. As a conclusion, the most suitable model is presented, as well as the reasoning why it was chosen

    Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea

    Get PDF
    Low oxygen conditions, often referred to as oxy- gen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, low- est oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratifi- cation is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM- ECOHAM to provide a general characterisation of the dif- ferent zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub- thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly produc- tive, non-stratified coastal zone, (2) a productive, season- ally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub- thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification pe- riods (textgreater60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub- thermocline volume implying both a small initial oxygen in- ventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial dif- ferences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen de- ficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification which pro- tects this area from the evolution of low oxygen conditions. In contrast, the southern central North Sea is highly suscep- tible to low oxygen conditions (type 2). We furthermore show that benthic diagenetic processes represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50% of the overall consumption. Thus, primary production followed by rem- ineralisation of organic matter under stratified conditions constitutes the main driver for the evolution of oxygen defi- ciency in the southern central North Sea. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the es- timation of the impact of anthropogenic drivers on the North Sea oxygen conditions

    Assessing the Effects of WFD Nutrient Reductions Within an OSPAR Frame Using Trans-boundary Nutrient Modeling

    Get PDF
    The reduction of riverine nutrients inputs is considered the means of choice to improve the eutrophication status of the southern North Sea. With the European Union's Water Framework Directive (WFD) reduction measures presently under debate, two questions arise: (1) What changes in eutrophication indicators can be expected? (2) How do the reductions by the individual member states contribute to these? We combine an element tracing method (TBNT) with a biogeochemical model to analyze the effects of WFD-compliant nitrogen reductions proposed by OSPAR's North Sea member states. We first analyze changes in selected OSPAR assessment parameters relative to a reference simulation. Second, we quantify the source-specific contributions to total nitrogen (TN) in different regions. An overall nitrogen load reduction of 14 % is achieved. However, the response shows significant spatial variations due to strong differences between the countries' load reductions. TN and dissolved inorganic nitrogen reductions up to 60 % and 35 % are simulated near the Bay of Seine (France) and in the German Bight, respectively. Along the Dutch coast, reductions are below 10 %, and no changes occur along the British coast. Reductions in chlorophyll-a are generally lower. The TBNT analysis for the German Exclusive Economic Zone shows a TN reduction in the coastal region comparable to the N reductions in the German rivers (~25 %). In the offshore region, TN is reduced by only 6 % due to the strong influence of riverine sources with only low reductions and non-riverine sources. Our analysis reveals that non-linear responses in the biogeochemistry cause a faster removal of N from rivers with strong reductions by benthic denitrification, which enhances indirectly the removal of N from less reduced sources. Consequently, reductions in remote sources in non-problem areas can have a relevant positive effect on problem areas. This demonstrates that the TBNT method is an ideal tool to put in practice the “source-oriented approach” advocated by OSPAR, and to inform stakeholders about the effects of defined reduction strategies. However, an assessment framework is required to efficiently use it in management and for decision making, either by OSPAR, or in the context of WFD or Marine Strategy Framework Directive

    Assessing the effects of WFD nutrient reductions within an OSPAR frame using trans-boundary nutrient modeling

    Get PDF
    The reduction of riverine nutrients inputs is considered the means of choice to improve the eutrophication status of the southern North Sea. With the European Union's Water Framework Directive (WFD) reduction measures presently under debate, two questions arise: (1) What changes in eutrophication indicators can be expected? (2) How do the reductions by the individual member states contribute to these? We combine an element tracing method (TBNT) with a biogeochemical model to analyze the effects of WFD-compliant nitrogen reductions proposed by OSPAR's North Sea member states. We first analyze changes in selected OSPAR assessment parameters relative to a reference simulation. Second, we quantify the source-specific contributions to total nitrogen (TN) in different regions. An overall nitrogen load reduction of 14 % is achieved. However, the response shows significant spatial variations due to strong differences between the countries' load reductions. TN and dissolved inorganic nitrogen reductions up to 60 % and 35 % are simulated near the Bay of Seine (France) and in the German Bight, respectively. Along the Dutch coast, reductions are below 10 %, and no changes occur along the British coast. Reductions in chlorophyll-a are generally lower. The TBNT analysis for the German Exclusive Economic Zone shows a TN reduction in the coastal region comparable to the N reductions in the German rivers (~25 %). In the offshore region, TN is reduced by only 6 % due to the strong influence of riverine sources with only low reductions and non-riverine sources. Our analysis reveals that non-linear responses in the biogeochemistry cause a faster removal of N from rivers with strong reductions by benthic denitrification, which enhances indirectly the removal of N from less reduced sources. Consequently, reductions in remote sources in non-problem areas can have a relevant positive effect on problem areas. This demonstrates that the TBNT method is an ideal tool to put in practice the “source-oriented approach” advocated by OSPAR, and to inform stakeholders about the effects of defined reduction strategies. However, an assessment framework is required to efficiently use it in management and for decision making, either by OSPAR, or in the context of WFD or Marine Strategy Framework Directive

    In Silico Assessment of Safety and Efficacy of Screw Placement for Pediatric Image-Guided Otologic Surgery.

    Get PDF
    Introduction: Current high-accuracy image-guided systems for otologic surgery use fiducial screws for patient-to-image registration. Thus far, these systems have only been used in adults, and the safety and efficacy of the fiducial screw placement has not yet been investigated in the pediatric population. Materials and Methods: In a retrospective study, CT image data of the temporal region from 11 subjects meeting inclusion criteria (8-48 months at the time of surgery) were selected, resulting in n = 20 sides. These datasets were investigated with respect to screw stability efficacy in terms of the cortical layer thickness, and safety in terms of the distance of potential fiducial screws to the dura mater or venous sinuses. All of these results are presented as distributions, thickness color maps, and with descriptive statistics. Seven regions within the temporal bone were analyzed individually. In addition, four fiducial screws per case with 4 mm thread-length were placed in an additively manufactured model according to the guidelines for robotic cochlear implantation surgery. For all these screws, the minimal distance to the dura mater or venous sinuses was measured, or if applicable how much they penetrated these structures. Results: The cortical layer has been found to be mostly between 0.7-3.3 mm thick (from the 5th to the 95th percentile), while even thinner areas exist. The distance from the surface of the temporal bone to the dura mater or the venous sinuses varied considerably between the subjects and ranged mostly from 1.1-9.3 mm (from the 5th to the 95th percentile). From all 80 placed fiducial screws of 4 mm thread length in the pediatric subject younger than two years old, 22 touched or penetrated either the dura or the sigmoid sinus. The best regions for fiducial placement would be the mastoid area and along the petrous pyramid in terms of safety. In terms of efficacy, the parietal followed by the petrous pyramid, and retrosigmoid regions are most suited. Conclusion: The current fiducial screws and the screw placement guidelines for adults are insufficiently safe or effective for pediatric patients
    corecore