474 research outputs found

    Semi-rational engineering of Adh2 for improved methanol utilization in Komagataella phaffii

    Get PDF
    Please click Download on the upper right corner to see the full description

    Popliteal Cysts in Paediatric Patients: Clinical Characteristics and Imaging Features on Ultrasound and MRI

    Get PDF
    Popliteal cysts, or Baker cysts, are considered rare in children and may exhibit particular features, as compared with adults. We studied data from 80 paediatric patients with 55 Baker cysts, examined over a period of 7 years, and correlated clinical presentation with findings on ultrasonography and MRI. Prevalence of popliteal cysts was 57% in arthritic knees, 58% with hypermobility syndrome, and 28% without risk factors. Only one patient had a trauma history and showed an ipsilateral cyst. Mean cyst volume was 3.4 mL; cysts were larger in boys. Patients with arthritis had echogenic cysts in 53%. Cyst communication with the joint space was seen in 64% on ultrasonography and 86% on MRI. In conclusion, Baker cysts are a common finding in a clinically preselected paediatric population. Children with Baker cysts should be assessed for underlying arthritis and inherited joint hypermobility, while sporadic Baker cysts appear to be common, as well

    Comprehensive Computational Model for Coupled Fluid Flow, Mass Transfer, and Light Supply in Tubular Photobioreactors Equipped with Glass Sponges

    Get PDF
    The design and optimization of photobioreactor(s) (PBR) benefit from the development of robust and quantitatively accurate computational fluid dynamics (CFD) models, which incorporate the complex interplay of fundamental phenomena. In the present work, we propose a comprehensive computational model for tubular photobioreactors equipped with glass sponges. The simulation model requires a minimum of at least three submodels for hydrodynamics, light supply, and biomass kinetics, respectively. First, by modeling the hydrodynamics, the light–dark cycles can be detected and the mixing characteristics of the flow (besides the mass transport) can be analyzed. Second, the radiative transport model is deployed to predict the local light intensities according to the wavelength of the light and scattering characteristics of the culture. The third submodel implements the biomass growth kinetic by coupling the local light intensities to hydrodynamic information of the CO2 concentration, which allows to predict the algal growth. In combination, the novel mesoscopic simulation model is applied to a tubular PBR with transparent walls and an internal sponge structure. We showcase the coupled simulation results and validate specific submodel outcomes by comparing the experiments. The overall flow velocity, light distribution, and light intensities for individual algae trajectories are extracted and discussed. Conclusively, such insights into complex hydrodynamics and homogeneous illumination are very promising for CFD-based optimization of PBR

    Comprehensive Computational Model for Coupled Fluid Flow, Mass Transfer, and Light Supply in Tubular Photobioreactors Equipped with Glass Sponges

    Get PDF
    The design and optimization of photobioreactor(s) (PBR) benefit from the development of robust and quantitatively accurate computational fluid dynamics (CFD) models, which incorporate the complex interplay of fundamental phenomena. In the present work, we propose a comprehensive computational model for tubular photobioreactors equipped with glass sponges. The simulation model requires a minimum of at least three submodels for hydrodynamics, light supply, and biomass kinetics, respectively. First, by modeling the hydrodynamics, the light–dark cycles can be detected and the mixing characteristics of the flow (besides the mass transport) can be analyzed. Second, the radiative transport model is deployed to predict the local light intensities according to the wavelength of the light and scattering characteristics of the culture. The third submodel implements the biomass growth kinetic by coupling the local light intensities to hydrodynamic information of the CO2 concentration, which allows to predict the algal growth. In combination, the novel mesoscopic simulation model is applied to a tubular PBR with transparent walls and an internal sponge structure. We showcase the coupled simulation results and validate specific submodel outcomes by comparing the experiments. The overall flow velocity, light distribution, and light intensities for individual algae trajectories are extracted and discussed. Conclusively, such insights into complex hydrodynamics and homogeneous illumination are very promising for CFD-based optimization of PBR

    Characterization of Von Willebrand Factor Multimer Structure in Patients With Severe Aortic Stenosis

    Get PDF
    Acquired von Willebrand syndrome (AVWS) associated with severe aortic stenosis (AS) has been frequently subclassified into a subtype 2A based on the deficiency of high-molecular-weight (HMW) multimers as it is seen in inherited von Willebrand disease (VWD) type 2A. However, the multimeric phenotype of VWD type 2A does not only include an HMW deficiency but also a decrease in intermediate-molecular-weight (IMW) multimers and an abnormal inner triplet band pattern. These additional characteristics have not been evaluated in AVWS associated with severe AS. Therefore, we recruited N = 31 consecutive patients with severe AS and performed a high-resolution Western blot with densitometrical band quantification to characterize the von Willebrand factor (VWF) multimeric structure and reevaluate the AVWS subtype classification. Study patients showed an isolated HMW VWF multimer deficiency without additional abnormalities of the IMW portions and the inner triplet structure in 65%. In conclusion, the multimeric pattern of AVWS associated with severe AS does neither resemble that seen in AVWS type 2A nor that seen in inherited VWD type 2A. Therefore, a subclassification into a type 2A should not be used

    The synthetic Tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis

    Get PDF
    Introduction: Angiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, vasculotide (VT), to protect against vascular leakage and mortality in a murine model of polymicrobial abdominal sepsis. Methods: Polymicrobial abdominal sepsis in C57BL6 mice was induced by cecal-ligation-and-puncture (CLP). Mice were treated with different dosages of VT or equal volume of phosphate-buffered saline (PBS). Sham-operated animals served as time-matched controls. Results: Systemic administration of VT induced long-lasting Tie2 activation in vivo. VT protected against sepsis-induced endothelial barrier dysfunction, as evidenced by attenuation of vascular leakage and leukocyte transmigration into the peritoneal cavity. Histological analysis revealed that VT treatment ameliorated leukocyte infiltration in kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression. VT-driven effects were associated with significantly improved organ function and reduced circulating cytokine levels. The endothelial-specific action of VT was supported by additional in vitro studies showing no effect of VT on either cytokine release from isolated peritoneal macrophages, or migratory capacity of isolated neutrophils. Finally, administration of VT pre-CLP (hazard ratio 0.39 [95% confidence interval 0.19-0.81] P < 0.001) and post-CLP reduced mortality in septic mice (HR 0.22 [95% CI 0.06-0.83] P < 0.05). Conclusions: We provide proof of principle in support of the efficacious use of PEGylated VT, a drug-like Tie2 receptor agonist, to counteract microvascular endothelial barrier dysfunction and reduce mortality in a clinically relevant murine sepsis model. Further studies are needed to pave the road for clinical application of this therapeutic concept

    Screening of Vietnamese medicinal plants for NF-κB signaling inhibitors: Assessing the activity of flavonoids from the stem bark of Oroxylum indicum

    Get PDF
    AbstractEthnopharmacological relevanceSeventeen plants used in Vietnamese traditional medicine for the treatment of inflammatory disorders were screened for NF-κB inhibitory activity. Oroxylum indicum, which exhibited activity, was investigated in detail.Materials and methodsForty plant extracts from 17 species were prepared by maceration using dichloromethane and methanol and were tested (10µg/mL) to evaluate their ability to inhibit NF-κB activation using TNF-α-stimulated HEK-293 cells stably transfected with a NF-κB-driven luciferase reporter. The active extract of Oroxylum indicum was subsequently fractionated by different chromatographic techniques. After isolation, all single compounds were identified by spectroscopic methods and assessed for NF-κB inhibitory effects.ResultsThe dichloromethane extracts obtained from Chromolaena odorata leaves and the stem bark of Oroxylum indicum showed distinct inhibitory effects on NF-κB activation at a concentration of 10µg/mL. The active extract of Oroxylum indicum was subjected to further phytochemical studies resulting in identification of four flavonoid aglyca and six flavonoid glycosides. Pharmacological evaluation of the obtained compounds identified oroxylin A as the most active substance (IC50=3.9µM, 95% CI: 3.5–4.4µM), while chrysin and hispidulin showed lower activity with IC50=7.2µM (95% CI: 6.0–8.8µM) and 9.0µM (95% CI: 7.9–10.2µM), respectively. Interestingly, in this study the activity of baicalein (IC50=28.1µM, 95% CI: 24.6–32.0µM) was weak. The isolated glycosides showed no inhibitory activity when tested at a concentration of 30µM. Quantification of the four active flavonoids in extracts and plant materials suggested that oroxylin A contributes to the NF-κB inhibitory activity of the stem barks of Oroxylum indicum to a greater extent than baicalein which was thought to be responsible for the anti-inflammatory activity of this plant.ConclusionsThe screening presented in this study identified the dichloromethane extracts of Chromolaena odorata and Oroxylum indicum as promising sources for NF-κB inhibitors. Hispidulin, baicalein, chrysin and oroxylin A, isolated from Oroxylum indicum, were identified as inhibitors of NF- κB activation

    TAPBPR bridges UDP-glucose : glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

    Get PDF
    Funding Wellcome: Senior Research Fellowship 104647, Andreas Neerincx, Louise H Boyle Royal Society: University Research Fellowship, UF100371, Janet E Deane Cancer Research UK: Programme Grant, C7056A, Andy van Hateren, Tim Elliott Deutsche Forschungsgemeinschaft: SFB 685, Nico Trautwein, Stefan Stevanović Wellcome: PhD studentship, 089563, Clemens Hermann Wellcome: Strategic Award 100140, Robin Antrobus Wellcome: Programme grant, WT094847MA, Huan Cao Acknowledgements We are extremely grateful to Peter Cresswell and Najla Arshad (Yale University School of Medicine, New Haven, CT) for valuable advice, tapasin and TAP-specific antibody reagents, and the recombinant calreticulin proteins. We thank John Trowsdale (University of Cambridge, UK) for his mentorship and critical reading of this manuscript, and Jim Kaufman (University of Cambridge, UK) for useful discussions. We also thank Yi Cao (Cranfield University, UK) for MATLAB programming for densitometry analysis, and Mark Vickers and Sadie Henderson (Scottish National Blood Transfusion Services, UK) for permitting the use of and assistance with the Amersham WB system. The reagent ARP7099 FEC peptide pool was obtained from the Centre for AIDS Reagents, National Institute for Biological Standards and Control (NIBSC), and was donated by the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH.Peer reviewedPublisher PD
    corecore