4 research outputs found

    Fetal bladder wall regeneration with a collagen biomatrix and histological evaluation of bladder exstrophy in a fetal sheep model.

    No full text
    Contains fulltext : 70288.pdf (publisher's version ) (Closed access)OBJECTIVES: To evaluate histological changes in an animal model for bladder exstrophy and fetal repair of the bladder defect with a molecular-defined dual-layer collagen biomatrix to induce fetal bladder wall regeneration. METHODS: In 12 fetal lambs the abdominal wall and bladder were opened by a midline incision at 79 days' gestation. In 6 of these lambs an uncorrected bladder exstrophy was created by suturing the edges of the opened bladder to the abdominal wall (group 1). The other 6 lambs served as a repair group, where a dual-layer collagen biomatrix was sutured into the bladder wall and the abdominal wall was closed (group 2). A caesarean section was performed at 140 days' gestation, followed by macroscopic and histological examination. RESULTS: Group 1 showed inflammatory and maturational changes in the mucosa, submucosa and detrusor muscle of all the bladders. In group 2, bladder regeneration was observed, with urothelial coverage, ingrowth of fibroblasts and smooth muscle cells, deposition of collagen, neovascularization and nerve fibre formation. This tissue replaced the collagen biomatrix. No structural changes of the bladder were seen in group 2. CONCLUSIONS: The animal model, as in group 1, for bladder exstrophy shows remarkable histological resemblance with the naturally occurring anomaly in humans. This model can be used to develop new methods to salvage or regenerate bladder tissue in bladder exstrophy patients. Fetal bladder wall regeneration with a collagen biomatrix is feasible in this model, resulting in renewed formation of urothelium, blood vessels, nerve fibres, ingrowth of smooth muscle cells and salvage of the native bladder

    Preparation and characterization of injectable fibrillar type I collagen and evaluation for pseudoaneurysm treatment in a pig model.

    Get PDF
    Contains fulltext : 89668.pdf (publisher's version ) (Closed access)OBJECTIVE: Despite the efficacy of collagen in femoral artery pseudoaneurysm treatment, as reported in one patient study, its use has not yet gained wide acceptance in clinical practice. In this particular study, the collagen was not described in detail. To further investigate the potential of collagen preparations, we prepared and characterized highly purified injectable fibrillar type I collagen and evaluated its use for femoral artery pseudoaneurysm (PSA) treatment in vivo using a pig model. METHODS: Purified fibrillar type I collagen was characterized using electron microscopy. The effect of three different sterilization procedures, ie, hydrogen peroxide gas plasma (H2O2), ethylene oxide gas (EtO), and gamma irradiation, was studied on both SDS-PAGE and platelet aggregation. Different collagen injectables were prepared (3%, 4%, and 5%) and tested using an injection force test applying a 21-gauge needle. To evaluate the network characteristics of the injectable collagen, the collagen was suspended in phosphate buffered saline (PBS) at 37 degrees C and studied both macroscopically and electron microscopically. To determine whether the collagen induced hemostasis in vivo, a pig PSA model was used applying a 4% EtO sterilized collagen injectable, and evaluation by angiography and routine histology. RESULTS: Electron microscopy of the purified type I collagen revealed intact fibrils with a distinct striated pattern and a length<300 mum. Both SDS-PAGE and platelet aggregation analysis of the sterilized collagen indicated no major differences between EtO and H2O2 sterilization, although gamma-irradiated collagen showed degradation products. Both 3% and 4% (w/v) collagen suspensions were acceptable with respect to the force used (<50 N). The 4% suspension was selected as the preferred injectable collagen, which formed a dense network under physiologic conditions. Testing the collagen in vivo (n=5), the angiograms revealed that the PSA partly or completely coagulated. Histology confirmed the network formation, which was surrounded by thrombus. CONCLUSIONS: Collagen injectables were prepared and EtO sterilized without major loss of structural integrity and platelet activity. In vivo, the injectable collagen formed a dense network and triggered (partial) local hemostasis. Although optimization is needed, an injectable collagen may be used as a therapeutic agent for femoral PSA treatment.1 november 201
    corecore